Kang Sik Nam, etc., al. Air sampling and simultaneous detection of airborne influenza virus via gold nanorod-based plasmonic PCR. Journal of Hazardous Materials
Reliable and sensitive virus detection is essential to prevent airborne virus transmission. The polymerase chain reaction (PCR) is one of the most compelling and effective diagnostic techniques for detecting airborne pathogens. However, most PCR diagnostics rely on thermocycling, which involves a time-consuming Peltier block heating methodology. Plasmonic PCR is based on light-driven photothermal heating of plasmonic nanostructures to address the key drawbacks of traditional PCR. This study introduces a methodology for plasmonic PCR detection of air-sampled influenza virus (H1N1). An electrostatic air sampler was used to collect the aerosolized virus in a carrier liquid for 10 min. Simultaneously, the viruses collected in the liquid were transferred to a tube containing gold (Au) nanorods (aspect ratio = 3.6). H1N1 viruses were detected in 12 min, which is the total time required for reverse transcription, fast thermocycling via plasmonic heating through gold nanorods, and in situ fluorescence detection. This methodology showed a limit of detection of three RNA copies/μL liquid for H1N1 influenza virus, which is comparable to that of commercially available PCR devices. This methodology can be used for the rapid and precise identification of pathogens on-site, while significantly reducing the time required for monitoring airborne viruses.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 8 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 8 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 10 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 10 hours ago
- Phylogenetic Analysis of Highly Pathogenic Avian Influenza H7 Viruses in Australia and New Zealand Suggests Local Viral Evolution 1 days ago
[Go Top] [Close Window]


