Abe H, Mine J, Parchariyanon S, Takemae N, et al. Co-infection of influenza A viruses of swine contributes to effective shuffling of gene segments in a naturally reared pig. Virology 2015;484:203-212
Following the 2009 H1N1 pandemic, surveillance activities have been accelerated globally to monitor the emergence of novel reassortant viruses. However, the mechanism by which influenza A viruses of swine (IAV-S) acquire novel gene constellations through reassortment events in natural settings remains poorly understood. To explore the mechanism, we collected 785 nasal swabs from pigs in a farm in Thailand from 2011 to 2014. H3N2, H3N1, H1N1 and H1N2 IAVs-S were isolated from a single co-infected sample by plaque purification and showed a high degree of diversity of the genome. In particular, the H1N1 isolates, possessing a novel gene constellation previously unreported in Thailand, exhibited greater variation in internal genes than H3N2 IAVs-S. A pair of isolates, designated H3N2-B and H1N1-D, was determined to have been initially introduced to the farm. These results demonstrate that numerous IAVs-S with various gene constellations can be created in a single co-infected pig via reassortment
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 1 days ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 1 days ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 1 days ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 2 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 2 days ago
[Go Top] [Close Window]