-

nihao guest [ sign in / register ]
2024-5-6 8:25:13


Matloob Husain and Chen-Yi Cheung. Histone Deacetylase 6 Inhibits Influenza A Virus Release by Downregulating the Trafficking of Viral Components to the Plasma Membrane via Its Substrate, Acetylated Microtubules. J. Virol. October 2014 vol. 88 no. 19 11229-11239
submited by kickingbird at Sep, 12, 2014 11:50 AM from J. Virol. October 2014 vol. 88 no. 19 11229-11239

Mammalian cells produce many proteins, such as IFITM3, ISG15, MxA, and viperin, that inhibit influenza A virus (IAV) infection. Here, we show that a new class of host protein, histone deacetylase 6 (HDAC6), inhibits IAV infection. We found that HDAC6-overexpressing cells release about 3-fold less IAV progeny, whereas HDAC6-depleted cells release about 6-fold more IAV progeny. The deacetylase activity of HDAC6 played a role in its anti-IAV function as tubacin, a specific small-molecule inhibitor of HDAC6, increased the release of IAV progeny in a dose-dependent manner. Further, as visualized by electron microscopy, tubacin-treated cells showed an increase in IAV budding at the plasma membrane, the site of IAV assembly. Tubacin is a domain-specific inhibitor and binds to one of the two HDAC6 catalytic domains possessing tubulin deacetylase activity. This indicated the potential involvement of acetylated microtubules in the trafficking of viral components to the plasma membrane. Indeed, as quantified by flow cytometry, there was about a 2.0- to 2.5-fold increase and about a 2.0-fold decrease in the amount of viral envelope protein hemagglutinin present on the plasma membrane of tubacin-treated/HDAC6-depleted and HDAC6-overexpressing cells, respectively. In addition, the viral ribonucleoprotein complex was colocalized with acetylated microtubule filaments, and viral nucleoprotein coimmunoprecipitated with acetylated tubulin. Together, our findings indicate that HDAC6 is an anti-IAV host factor and exerts its anti-IAV function by negatively regulating the trafficking of viral components to the host cell plasma membrane via its substrate, acetylated microtubules.

See Also:

Latest articles in those days:

[Go Top]    [Close Window]

Related Pages:
Learn about the flu news, articles, events and more
Subscribe to the weekly F.I.C newsletter!


  

Site map  |   Contact us  |  Term of use  |  FAQs |  粤ICP备10094839号-1
Copyright ©www.flu.org.cn. 2004-2024. All Rights Reserved. Powered by FIC 4.0.1
  Email:webmaster@flu.org.cn