Noti JD, Blachere FM, McMillen CM, Lindsley WG, Ka. High Humidity Leads to Loss of Infectious Influenza Virus from Simulated Coughs. PLoS ONE 8(2): e57485. doi:10.1371/journal.pone.00
Abstract
Background
The role of relative humidity in the aerosol transmission of influenza was examined in a simulated examination room containing coughing and breathing manikins.
Methods
Nebulized influenza was coughed into the examination room and Bioaerosol samplers collected size-fractionated aerosols (<1 μM, 1–4 μM, and >4 μM aerodynamic diameters) adjacent to the breathing manikin’s mouth and also at other locations within the room. At constant temperature, the RH was varied from 7–73% and infectivity was assessed by the viral plaque assay.
Results
Total virus collected for 60 minutes retained 70.6–77.3% infectivity at relative humidity ≤23% but only 14.6–22.2% at relative humidity ≥43%. Analysis of the individual aerosol fractions showed a similar loss in infectivity among the fractions. Time interval analysis showed that most of the loss in infectivity within each aerosol fraction occurred 0–15 minutes after coughing. Thereafter, losses in infectivity continued up to 5 hours after coughing, however, the rate of decline at 45% relative humidity was not statistically different than that at 20% regardless of the aerosol fraction analyzed.
Conclusion
At low relative humidity, influenza retains maximal infectivity and inactivation of the virus at higher relative humidity occurs rapidly after coughing. Although virus carried on aerosol particles <4 μM have the potential for remaining suspended in air currents longer and traveling further distances than those on larger particles, their rapid inactivation at high humidity tempers this concern. Maintaining indoor relative humidity >40% will significantly reduce the infectivity of aerosolized virus.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 20 hours ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 20 hours ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 20 hours ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 1 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 1 days ago
[Go Top] [Close Window]