Liao YC, Lee MS, Ko CY, Hsiung CA.. Bioinformatics models for predicting antigenic variants of influenza A/H3N2 virus. Bioinformatics. 2008 Jan 10
MOTIVATION: Continual and accumulated mutations in hemagglutinin (HA) protein of influenza A virus generate novel antigenic strains that cause annual epidemics. RESULTS: We propose a model by incorporating scoring and regression methods to predict antigenic variants. Based on collected sequences of influenza A/H3N2 viruses isolated between 1971 and 2002, our model can be used to accurately predict the antigenic variants in 1999-2004 (agreement rate = 91.67%). Twenty amino acid positions identified in our model contribute significantly to antigenic difference and are potential immunodominant positions. CONTACT: hsiung@nhri.org.tw Supplemental information: The supplementary information includes 62 amino acid sequences of H3N2 viruses and 277 pair-wise antigenic distances.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 7 hours ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 7 hours ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 7 hours ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 17 hours ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 18 hours ago
[Go Top] [Close Window]