Wu G, Yan S.. Prediction of mutations engineered by randomness in H5N1 hemagglutinins of influenza A virus. Amino Acids. 2007 Nov 2
This is the continuation of our studies on the prediction of mutation engineered by randomness in proteins from influenza A virus. In our previous studies, we have demonstrated that randomness plays a role in engineering mutations because the measures of randomness in protein are different before and after mutations. Thus we built a cause-mutation relationship to count the mutation engineered by randomness, and conducted several concept-initiated studies to predict the mutations in proteins from influenza A virus, which demonstrated the possibility of prediction of mutations along this line of thought. On the other hand, these concept-initiated studies indicate the directions forwards the enhancement of predictability, of which we need to use the neural network instead of logistic regression that was used in those concept-initiated studies to enhance the predictability. In this proof-of-concept study, we attempt to apply the neural network to modeling the cause-mutation relationship to predict the possible mutation positions, and then we use the amino acid mutating probability to predict the would-be-mutated amino acids at predicted positions. The results confirm the possibility of use of internal cause-mutation relationship with neural network model to predict the mutation positions and use of amino acid mutating probability to predict the would-be-mutated amino acids.
See Also:
Latest articles in those days:
- Intranasal influenza virus-vectored vaccine offers protection against clade 2.3.4.4b H5N1 infection in small animal models 5 hours ago
- Mapping of stakeholders in avian influenza surveillance in Canada 17 hours ago
- [preprint]Population Immunity to Hemagglutinin Head, Stalk and Neuraminidase of Highly Pathogenic Avian Influenza 2.3.4.4b A(H5N1) viruses in the United States and the Impact of Seasonal Influenza on 1 days ago
- Airborne Influenza Virus Surveillance Platform Using Paper-Based Immunosensors and a Growth-Based Virus Aerosol Concentrator 1 days ago
- [preprint]A Human H5N1 Influenza Virus Expressing Bioluminescence for Evaluating Viral Infection and Identifying Therapeutic Interventions 2 days ago
[Go Top] [Close Window]