Lu Yao, Christine Korteweg, Wei Hsueh, and Jiang G. Avian influenza receptor expression in H5N1-infected and noninfected human tissues. FASEB J, published online Oct 9
Avian and human influenza viruses preferentially bind to
-2,3-linked and
-2,6-linked sialic acids, respectively. Until today, the distributions of these two receptor types had never been investigated in H5N1-infected human tissue samples. Here, the expression of avian (AIV-Rs) and human influenza receptors (HuIV-Rs) is studied in various organs (upper and lower respiratory tracts, brain, placenta, liver, kidney, heart, intestines, and spleen) of two H5N1 cases and 14 control cases. Histochemical stains using biotinylated Maackia amurensis lectin II and Sambucus nigra agglutinin were performed to localize AIV-Rs and HuIV-Rs, respectively. Immunohistochemical stainings were performed to identify the receptor-bearing cells. AIV-Rs were detected on type II pneumocytes; a limited number of epithelial cells of the upper respiratory tract; and the bronchi, bronchioli, and trachea; as well as on Kupffer cells, glomerular cells, splenic T cells, and neurons in the brain and intestines. HuIV-Rs were abundantly present in the respiratory tract and lungs. They were also detected on Hofbauer cells, glomerular cells, splenic B cells, and in the liver. Moreover, endothelial cells of all organs examined expressed both receptor types. In conclusion, the distribution pattern of AIV-Rs is partially inconsistent with the pattern of infected cells as detected in previous studies, which suggests there may be other receptors or mechanisms involved in H5N1 infection. In addition, the diffuse presence of receptors on endothelial cells may account for the multiple organ involvement in H5N1 influenza. Finally, the relative lack of AIV-Rs in the upper airway may be a one of the factors preventing efficient human-to-human transmission of H5N1 influenza.
-2,3-linked and
-2,6-linked sialic acids, respectively. Until today, the distributions of these two receptor types had never been investigated in H5N1-infected human tissue samples. Here, the expression of avian (AIV-Rs) and human influenza receptors (HuIV-Rs) is studied in various organs (upper and lower respiratory tracts, brain, placenta, liver, kidney, heart, intestines, and spleen) of two H5N1 cases and 14 control cases. Histochemical stains using biotinylated Maackia amurensis lectin II and Sambucus nigra agglutinin were performed to localize AIV-Rs and HuIV-Rs, respectively. Immunohistochemical stainings were performed to identify the receptor-bearing cells. AIV-Rs were detected on type II pneumocytes; a limited number of epithelial cells of the upper respiratory tract; and the bronchi, bronchioli, and trachea; as well as on Kupffer cells, glomerular cells, splenic T cells, and neurons in the brain and intestines. HuIV-Rs were abundantly present in the respiratory tract and lungs. They were also detected on Hofbauer cells, glomerular cells, splenic B cells, and in the liver. Moreover, endothelial cells of all organs examined expressed both receptor types. In conclusion, the distribution pattern of AIV-Rs is partially inconsistent with the pattern of infected cells as detected in previous studies, which suggests there may be other receptors or mechanisms involved in H5N1 infection. In addition, the diffuse presence of receptors on endothelial cells may account for the multiple organ involvement in H5N1 influenza. Finally, the relative lack of AIV-Rs in the upper airway may be a one of the factors preventing efficient human-to-human transmission of H5N1 influenza.See Also:
Latest articles in those days:
- [preprint]Mass mortality at penguin mega-colonies due to avian cholera confounds H5N1 HPAIV surveillance in Antarctica 12 hours ago
- [preprint]How the 1918-1920 Influenza Pandemic Spread Across Switzerland - Spatial Patterns and Determinants of Incidence and Mortality 13 hours ago
- Influenza C Virus in Children With Acute Bronchiolitis and Febrile Seizures 17 hours ago
- Feasibility and Safety of Aerosolized Influenza Virus Challenge in Humans Using Two Modern Delivery Systems 17 hours ago
- Avian Influenza Weekly Update # 1026: 12 December 2025 1 days ago
[Go Top] [Close Window]


