Paltrinieri S, Spagnolo V, Giordano A, Moreno Mart. Influenza Virus Type A Serosurvey in Cats. Emerg Infect Dis, published online Feb 28
To the Editor: Recent reports of cats positive for H5N1 type A influenza virus raised the hypothesis that cats might have an epidemiologic role in this disease. Experimental findings seem to support this hypothesis. Experimentally infected cats might act as aberrant hosts (as do humans and other mammals), with symptoms and lesions developing and the virus subsequently spreading to other cats . The experimental conditions under which this occurs, however, can rarely be observed for domestic or wild cats. No spontaneous cases of transmission from cat to cat or cat to mammal have been reported, and scientifically validated reports about spontaneous disease in cats are rare . Reports about cats with circulating influenza virus antibodies are even more rare and occur in unusual epidemiologic situations . The true susceptibility of cats to type A influenza viruses in field conditions thus remains to be elucidated.
Based on the assumption that partially susceptible animals should mount an antibody response, we investigated the possible presence of antibodies against the nucleocapsid protein A (NPA), a common antigen of type A influenza viruses, expressed by both avian and human strains , in feline serum samples stored at the University of Milan and collected from 1999 to 2005. Only samples for which complete information regarding the cat (owned vs. free-roaming) and its health status were included in the study. Cats were grouped as healthy or sick on the basis of clinical signs; a complete clinicopathologic screening that included routine hematologic tests, clinical biochemical tests, and serum protein electrophoresis; serologic tests for feline immunodeficiency virus and feline leukemia virus infection, which are known to induce immunosuppression; and information regarding the follow-up, including postmortem examination for dead animals. Specifically, 196 serum samples satisfied the inclusion criteria in terms of anamnestic information about the sampled cat and, according to the above-mentioned diagnostic approach, cats were grouped as reported in the Table. Owned cats were mainly living in the urban area of Milan. By contrast, approximately half of the free-roaming cats included came from rescue shelters from a rural area northwest of Milan. Sixty samples (58.8%) from owned cats and 51 samples (54.2%) from free-roaming cats were collected from September to February, when seasonal human influenza peaks.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 48 minute(s) ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 49 minute(s) ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 52 minute(s) ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 11 hours ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 12 hours ago
[Go Top] [Close Window]