Dimmock NJ, Marriott AC. In vivo antiviral activity: defective interfering virus protects better against virulent Influenza A virus than a virulent virus. J Gen Virol. 2006 May;87(Pt 5):1259-65
A defective interfering (DI) virus differs from the infectious virus from which it originated in having at least one major deletion in its genome. Such DI genomes are replicated only in cells infected in trans with homologous infectious virus and, as their name implies, they interfere with infectious virus replication and reduce the yield of progeny virus. This potent antiviral activity has been abundantly demonstrated in cell culture with many different DI animal viruses, but few in vivo examples have been reported, with the notable exception of DI Influenza A virus. A clue to this general lack of success arose recently when an anomaly was discovered in which DI Influenza A virus solidly protected mice from lethal disease caused by A/PR/8/34 (H1N1) and A/WSN/40 (H1N1) viruses, but protected only marginally from disease caused by A/Japan/305/57 (A/Jap, H2N2). The problem was not any incompatibility between the DI and infectious genomes, as A/Jap replicated the DI RNA in vivo. However, A/Jap required 300-fold more mouse infectious units to cause clinical disease than A/PR8 and it was hypothesized that it was this excess of infectivity that abrogated the protective activity of the DI virus. This conclusion was verified by varying the proportions of DI and challenge virus and showing that increasing the DI virus : infectious virus ratio in infected mice resulted in interference. Thus, counter-intuitively, DI virus is most effective against viruses that cause disease with low numbers of particles, i.e. virulent viruses.
See Also:
Latest articles in those days:
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 6 hours ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 7 hours ago
- Avian raptors are indicator species and victims of high pathogenicity avian influenza virus HPAIV H5N1 (clade 2.3.4.4b) in Germany 7 hours ago
- Genetic and pathological analysis of hooded cranes (Grus monacha) naturally infected with clade 2.3.4.4b highly pathogenic avian influenza H5N1 virus in South Korea in the winter of 2022 7 hours ago
- H1N1 swine influenza viruses upregulate NEU1 expression through histone H3 acetylation regulated by HDAC2 7 hours ago
[Go Top] [Close Window]