Markovic-Plese S, Hemmer B, Zhao Y, Simon R, Pinilla C, Martin R. High level of cross-reactivity in influenza virus hemagglutinin-specific CD4+ T-cell response: Implications for the initiation of autoimmune response in multiple sclerosis. J Neuroimmunol. 2005 Sep 5; [Epub ahead of print]
Viral infections play a role in shaping and maintaining the peripheral T-cell repertoire, as well as in the initiation of autoimmune response via mechanisms of molecular mimicry. In this study, we addressed the flexibility of T-cell receptor (TCR) recognition and the degree of structural and sequence homology required for cross-reactive immune response in the induction of autoimmune response. We studied the extent of cross-reactivity of a CD4+ T-cell clone (TCC) specific for the immunodominant influenza virus hemagglutinin (Flu-HA) peptide derived from a patient with multiple sclerosis (MS) using positional scanning synthetic peptide combinatorial libraries (PS-SCL). We documented cross-reactivity against 14 Flu-HA variants, 11 viral, 15 human, and 3 myelin-derived peptides. Moreover, we identified six naturally occurring peptides with higher stimulatory potency than the native ligand, implicating high potential for cross-reactivity even for a virus-specific memory TCC. Our study demonstrates that flexibility of TCR recognition is present even in a clone with a high degree of TCR specificity for an infectious agent. The results have implications for vaccine design and for antigen-specific treatment strategies for autoimmune diseases.
See Also:
Latest articles in those days:
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 5 hours ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 6 hours ago
- Avian raptors are indicator species and victims of high pathogenicity avian influenza virus HPAIV H5N1 (clade 2.3.4.4b) in Germany 6 hours ago
- Genetic and pathological analysis of hooded cranes (Grus monacha) naturally infected with clade 2.3.4.4b highly pathogenic avian influenza H5N1 virus in South Korea in the winter of 2022 6 hours ago
- H1N1 swine influenza viruses upregulate NEU1 expression through histone H3 acetylation regulated by HDAC2 6 hours ago
[Go Top] [Close Window]