Saramaki J, Kaski K. Modelling development of epidemics with dynamic small-world networks. J Theor Biol. 2005 Jun 7;234(3):413-21. Epub 2005 Jan 20
Modelling development of epidemics with dynamic small-world networks.
Saramaki J, Kaski K.
Laboratory of Computational Engineering, Helsinki University of Technology, P.O. Box 9203, FIN-02015 HUT, Finland.
We discuss the dynamics of a minimal model for spreading of infectious diseases, such as various types of influenza. The spreading takes place on a dynamic small-world network and can be viewed as comprising short- and long-range spreading processes. We derive approximate equations for the epidemic threshold as well as the spreading dynamics, and show that there is a good agreement with numerical discrete time-step simulations. We then analyse the dependence of the epidemic saturation time on the initial conditions, and outline a possible method of utilizing the model in predicting the development of epidemics based on early figures of infected. Finally, we compare time series calculated with our model to real-world data.
Saramaki J, Kaski K.
Laboratory of Computational Engineering, Helsinki University of Technology, P.O. Box 9203, FIN-02015 HUT, Finland.
We discuss the dynamics of a minimal model for spreading of infectious diseases, such as various types of influenza. The spreading takes place on a dynamic small-world network and can be viewed as comprising short- and long-range spreading processes. We derive approximate equations for the epidemic threshold as well as the spreading dynamics, and show that there is a good agreement with numerical discrete time-step simulations. We then analyse the dependence of the epidemic saturation time on the initial conditions, and outline a possible method of utilizing the model in predicting the development of epidemics based on early figures of infected. Finally, we compare time series calculated with our model to real-world data.
See Also:
Latest articles in those days:
- Intranasal influenza virus-vectored vaccine offers protection against clade 2.3.4.4b H5N1 infection in small animal models 4 hours ago
- Mapping of stakeholders in avian influenza surveillance in Canada 16 hours ago
- [preprint]Population Immunity to Hemagglutinin Head, Stalk and Neuraminidase of Highly Pathogenic Avian Influenza 2.3.4.4b A(H5N1) viruses in the United States and the Impact of Seasonal Influenza on 1 days ago
- Airborne Influenza Virus Surveillance Platform Using Paper-Based Immunosensors and a Growth-Based Virus Aerosol Concentrator 1 days ago
- [preprint]A Human H5N1 Influenza Virus Expressing Bioluminescence for Evaluating Viral Infection and Identifying Therapeutic Interventions 2 days ago
[Go Top] [Close Window]