Saramaki J, Kaski K. Modelling development of epidemics with dynamic small-world networks. J Theor Biol. 2005 Jun 7;234(3):413-21. Epub 2005 Jan 20
Modelling development of epidemics with dynamic small-world networks.
Saramaki J, Kaski K.
Laboratory of Computational Engineering, Helsinki University of Technology, P.O. Box 9203, FIN-02015 HUT, Finland.
We discuss the dynamics of a minimal model for spreading of infectious diseases, such as various types of influenza. The spreading takes place on a dynamic small-world network and can be viewed as comprising short- and long-range spreading processes. We derive approximate equations for the epidemic threshold as well as the spreading dynamics, and show that there is a good agreement with numerical discrete time-step simulations. We then analyse the dependence of the epidemic saturation time on the initial conditions, and outline a possible method of utilizing the model in predicting the development of epidemics based on early figures of infected. Finally, we compare time series calculated with our model to real-world data.
Saramaki J, Kaski K.
Laboratory of Computational Engineering, Helsinki University of Technology, P.O. Box 9203, FIN-02015 HUT, Finland.
We discuss the dynamics of a minimal model for spreading of infectious diseases, such as various types of influenza. The spreading takes place on a dynamic small-world network and can be viewed as comprising short- and long-range spreading processes. We derive approximate equations for the epidemic threshold as well as the spreading dynamics, and show that there is a good agreement with numerical discrete time-step simulations. We then analyse the dependence of the epidemic saturation time on the initial conditions, and outline a possible method of utilizing the model in predicting the development of epidemics based on early figures of infected. Finally, we compare time series calculated with our model to real-world data.
See Also:
Latest articles in those days:
- A human-infecting H10N5 avian influenza virus: clinical features, virus reassortment, receptor-binding affinity, and possible transmission routes 12 hours ago
- [preprint]Pathogenicity and transmissibility of bovine-derived HPAI H5N1 B3.13 virus in pigs 13 hours ago
- [preprint]Defining the transmissible dose 50%, the donor inoculation dose that results in airborne transmission to 50% of contacts, for two pandemic influenza viruses in ferrets 13 hours ago
- [preprint]Examining the Survival of A(H5N1) Influenza Virus in Thermised Whole Cow Milk 13 hours ago
- Cross-species and mammal-to-mammal transmission of clade 2.3.4.4b highly pathogenic avian influenza A/H5N1 with PB2 adaptations 13 hours ago
[Go Top] [Close Window]