Kash JC, Basler CF, Garcia-Sastre A, Carter V, Billharz R, Swayne DE, Przygodzki RM, Taubenberger JK. Global host immune response: pathogenesis and transcriptional profiling of type A influenza viruses expressing the hemagglutinin and neuraminidase genes from the 1918 pandemic virus. J Virol. 2004 Sep;78(17):9499-511
Global host immune response: pathogenesis and transcriptional profiling of type A influenza viruses expressing the hemagglutinin and neuraminidase genes from the 1918 pandemic virus.
Kash JC, Basler CF, Garcia-Sastre A, Carter V, Billharz R, Swayne DE, Przygodzki RM, Taubenberger JK, Katze MG, Tumpey TM.
Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington 98195-8070, USA. jkash@u.washington.edu
To understand more fully the molecular events associated with highly virulent or attenuated influenza virus infections, we have studied the effects of expression of the 1918 hemagglutinin (HA) and neuraminidase (NA) genes during viral infection in mice under biosafety level 3 (agricultural) conditions. Using histopathology and cDNA microarrays, we examined the consequences of expression of the HA and NA genes of the 1918 pandemic virus in a recombinant influenza A/WSN/33 virus compared to parental A/WSN/33 virus and to an attenuated virus expressing the HA and NA genes from A/New Caledonia/20/99. The 1918 HA/NA:WSN and WSN recombinant viruses were highly lethal for mice and displayed severe lung pathology in comparison to the nonlethal New Caledonia HA/NA:WSN recombinant virus. Expression microarray analysis performed on lung tissues isolated from the infected animals showed activation of many genes involved in the inflammatory response, including cytokine, apoptosis, and lymphocyte genes that were common to all three infection groups. However, consistent with the histopathology studies, the WSN and 1918 HA/NA:WSN recombinant viruses showed increased up-regulation of genes associated with activated T cells and macrophages, as well as genes involved in apoptosis, tissue injury, and oxidative damage that were not observed in the New Caledonia HA/NA:WSN recombinant virus-infected mice. These studies document clear differences in gene expression profiles that were correlated with pulmonary disease pathology induced by virulent and attenuated influenza virus infections.
Kash JC, Basler CF, Garcia-Sastre A, Carter V, Billharz R, Swayne DE, Przygodzki RM, Taubenberger JK, Katze MG, Tumpey TM.
Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington 98195-8070, USA. jkash@u.washington.edu
To understand more fully the molecular events associated with highly virulent or attenuated influenza virus infections, we have studied the effects of expression of the 1918 hemagglutinin (HA) and neuraminidase (NA) genes during viral infection in mice under biosafety level 3 (agricultural) conditions. Using histopathology and cDNA microarrays, we examined the consequences of expression of the HA and NA genes of the 1918 pandemic virus in a recombinant influenza A/WSN/33 virus compared to parental A/WSN/33 virus and to an attenuated virus expressing the HA and NA genes from A/New Caledonia/20/99. The 1918 HA/NA:WSN and WSN recombinant viruses were highly lethal for mice and displayed severe lung pathology in comparison to the nonlethal New Caledonia HA/NA:WSN recombinant virus. Expression microarray analysis performed on lung tissues isolated from the infected animals showed activation of many genes involved in the inflammatory response, including cytokine, apoptosis, and lymphocyte genes that were common to all three infection groups. However, consistent with the histopathology studies, the WSN and 1918 HA/NA:WSN recombinant viruses showed increased up-regulation of genes associated with activated T cells and macrophages, as well as genes involved in apoptosis, tissue injury, and oxidative damage that were not observed in the New Caledonia HA/NA:WSN recombinant virus-infected mice. These studies document clear differences in gene expression profiles that were correlated with pulmonary disease pathology induced by virulent and attenuated influenza virus infections.
See Also:
Latest articles in those days:
- [preprint]Emergence and antigenic characterisation of influenza A(H3N2) viruses with hemagglutinin substitutions N158K and K189R during the 2024/25 influenza season 17 hours ago
- Epitope specificity shapes the CD4+ T cell response to influenza virus infection in mice 17 hours ago
- Vaccination against H5 HP avian influenza virus leads to persistent immune response in wild king penguins 1 days ago
- Molecular Epidemiology and Genetic Diversity of Influenza B Viruses Based on Whole-Genome Analysis in Japan and Myanmar, 2016-2020 1 days ago
- Assessing HPAI-H5 transmission risk across wild bird migratory flyways in the United States 1 days ago
[Go Top] [Close Window]


