Weber J, Ponse NLD, Zhu X, Carrasco MR, Han AX, Fu. The receptor binding properties of H5Ny influenza A viruses have evolved to bind to avian-type mucin-like O-glycans. PLoS Pathog. 2026 Jan 20;22(1):e1013812
Highly pathogenic H5Ny influenza A viruses are causing unprecedented, season-independent outbreaks across avian and mammalian species, including dairy cattle, a novel reservoir. The sialoside-binding properties of influenza A hemagglutinin (HA) are strongly related to its ability to infect and transmit between hosts. Mucin-like O-glycans, omnipresent in respiratory tracts, have been understudied as viral receptors due to their complexity. To address this, we synthesized 25 O-linked glycans with diverse sialosides, including modifications by fucosides and sulfates. Our findings reveal that H5Ny 2.3.4.4b viruses bind core 3 sialyl-Lewisx and Sia-Gal-β3GalNAc, O-linked glycans not recognized by classical H5 or other avian viruses. By determining crystal structures, we resolved the structural features of four glycans in an H5 hemagglutinin (HA) from a 2016 2.3.4.4b virus. While these viruses do not bind human-type receptors, their broad receptor specificity enhances binding to human tracheal tissues, suggesting that O-glycan recognition could contribute to the continues spillover of this clade.
See Also:
Latest articles in those days:
- [preprint]Emergence and antigenic characterisation of influenza A(H3N2) viruses with hemagglutinin substitutions N158K and K189R during the 2024/25 influenza season 13 hours ago
- Epitope specificity shapes the CD4+ T cell response to influenza virus infection in mice 13 hours ago
- Vaccination against H5 HP avian influenza virus leads to persistent immune response in wild king penguins 1 days ago
- Molecular Epidemiology and Genetic Diversity of Influenza B Viruses Based on Whole-Genome Analysis in Japan and Myanmar, 2016-2020 1 days ago
- Assessing HPAI-H5 transmission risk across wild bird migratory flyways in the United States 1 days ago
[Go Top] [Close Window]


