Amer Alagic. Quality Control Rapid Response in Pre-Pandemic Preparedness Showcasing a Synthetic H5N1 Genetic Template. Clinical Chemistry, Volume 71, Issue Supplement_1
Background
The SARS pandemic presented significant challenges globally, primarily due to the initial lack of well characterized patient samples, which impeded the cross-validation of assays and designs. The limited in silico approach did not encompass pre-analytical steps such as extraction, medium format or the analytical sensitivity (LoDs) and specificity, limiting the usability for many assays. Additionally, the absence of External Quality Assessment (EQA) hindered laboratories* ability to evaluate their performance based on peer benchmarking. Recent examples of H5N1 transmission to humans, necessitate rapid response for pandemic preparedness. Microbix employed a synthetic biology approach to design and develop a full process whole genome H5N1 cDNA control that can be used for assay design verification, validation, and ongoing Quality Control (QC).
Methods
Microbix used a synthetic biology approach to design and developed a whole genome H5N1 cDNA control based on published H5N1 consensus sequence. This whole genome H5N1 cDNA control was confirmed by NGS, quantified by ddPCR, and then formulated on swabs and in liquid format. Both formats were confirmed by testing inhouse on the Cepheid Gene Xpert? SARS/Flu/RSV assay, and additionally the liquid formats were provided for an EQA pilot.
Results
The timeline for creating the control was 10 days from design to a working prototype. The swab and liquid formulations performed as expected in the internal testing, and the external pilot with liquid samples showed consensus results across multiple platforms.
Conclusion
Microbix successfully created a non-infectious, quantified whole genome H5N1 cDNA control for use in assay verification/validation and EQA. The synthetic biology approach, along with the short timeline from design to formulation, could be utilized in pandemic emergencies for a rapid response to provide reference materials.
The SARS pandemic presented significant challenges globally, primarily due to the initial lack of well characterized patient samples, which impeded the cross-validation of assays and designs. The limited in silico approach did not encompass pre-analytical steps such as extraction, medium format or the analytical sensitivity (LoDs) and specificity, limiting the usability for many assays. Additionally, the absence of External Quality Assessment (EQA) hindered laboratories* ability to evaluate their performance based on peer benchmarking. Recent examples of H5N1 transmission to humans, necessitate rapid response for pandemic preparedness. Microbix employed a synthetic biology approach to design and develop a full process whole genome H5N1 cDNA control that can be used for assay design verification, validation, and ongoing Quality Control (QC).
Methods
Microbix used a synthetic biology approach to design and developed a whole genome H5N1 cDNA control based on published H5N1 consensus sequence. This whole genome H5N1 cDNA control was confirmed by NGS, quantified by ddPCR, and then formulated on swabs and in liquid format. Both formats were confirmed by testing inhouse on the Cepheid Gene Xpert? SARS/Flu/RSV assay, and additionally the liquid formats were provided for an EQA pilot.
Results
The timeline for creating the control was 10 days from design to a working prototype. The swab and liquid formulations performed as expected in the internal testing, and the external pilot with liquid samples showed consensus results across multiple platforms.
Conclusion
Microbix successfully created a non-infectious, quantified whole genome H5N1 cDNA control for use in assay verification/validation and EQA. The synthetic biology approach, along with the short timeline from design to formulation, could be utilized in pandemic emergencies for a rapid response to provide reference materials.
See Also:
Latest articles in those days:
- [preprint]Mass mortality at penguin mega-colonies due to avian cholera confounds H5N1 HPAIV surveillance in Antarctica 9 hours ago
- [preprint]How the 1918-1920 Influenza Pandemic Spread Across Switzerland - Spatial Patterns and Determinants of Incidence and Mortality 9 hours ago
- Influenza C Virus in Children With Acute Bronchiolitis and Febrile Seizures 13 hours ago
- Feasibility and Safety of Aerosolized Influenza Virus Challenge in Humans Using Two Modern Delivery Systems 14 hours ago
- Avian Influenza Weekly Update # 1026: 12 December 2025 1 days ago
[Go Top] [Close Window]


