Brigleb PH, Roubidoux EK, Lazure L, Livingston B,. Repeated oral exposure to H5N1 influenza virus in pasteurized milk does not cause adverse responses to subsequent influenza infection. Sci Adv. 2025 Sep 26;11(39):eaeb3906
In March 2024, a highly pathogenic avian influenza H5N1 (HPAI) clade 2.3.4.4b virus was identified in US dairy cows, with spillover to cats, poultry, and humans. Up to 30% of commercial pasteurized milk tested contained viral genome copies. The impact of residual viral remnants on host immunity is unknown. Orally ingested proteins can stimulate gut-associated lymphoid tissues, potentially inducing tolerance and altering responses to later infection. We found that milk pasteurization fully inactivated pandemic H1N1 and bovine H5N1 influenza viruses yet preserved hemagglutinin (HA) protein integrity. In mice, repeated oral exposure to inactivated virus did not alter mortality after H5N1 virus challenge. Preliminary data showed that na?ve mice exposed to improperly pasteurized milk containing live H5N1 virus developed lethal infection, whereas prior H1N1 infection conferred protection. Mice with preexisting H1N1 immunity remained protected when challenged with bovine H5N1 virus after exposure to H5N1 pasteurized in milk. These findings suggest that pasteurized milk containing inactivated H5N1 virus poses minimal health risks.
See Also:
Latest articles in those days:
- [preprint]Mass mortality at penguin mega-colonies due to avian cholera confounds H5N1 HPAIV surveillance in Antarctica 14 hours ago
- [preprint]How the 1918-1920 Influenza Pandemic Spread Across Switzerland - Spatial Patterns and Determinants of Incidence and Mortality 15 hours ago
- Influenza C Virus in Children With Acute Bronchiolitis and Febrile Seizures 19 hours ago
- Feasibility and Safety of Aerosolized Influenza Virus Challenge in Humans Using Two Modern Delivery Systems 19 hours ago
- Avian Influenza Weekly Update # 1026: 12 December 2025 2 days ago
[Go Top] [Close Window]


