de Jong, S.P.J., Conlan, A.J.K., Han, A.X. et al. Competition between transmission lineages mediated by human mobility shapes seasonal influenza epidemics in the US. Nat Commun 16, 4605 (2025)
Due to its climatic variability, complex mobility networks and geographic expanse, the United States represents a compelling setting to explore the transmission processes that lead to heterogeneous yearly seasonal influenza epidemics. By analyzing genomic and epidemiological data collected in the US from 2014 to 2023, we show that epidemics consisted of multiple co-circulating transmission lineages that could emerge from all regions and often rapidly expanded. Lineage spread was characterized by strong spatiotemporal hierarchies and lineage size correlated with timing of establishment in the US. Mechanistic epidemic simulations, supported by phylogeographic analyses, suggest that competition between lineages on a network of human mobility consistent with commuting flows drove lineage dynamics. Our results suggest that the processes that disseminate viruses nationwide are highly structured, but variability in the short-term processes that determine the locations, timing, and explosiveness of initial epidemic sparks limits predictability of regional and national epidemics.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 12 hours ago
- Avian influenza overview September - November 2025 13 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 13 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 15 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 15 hours ago
[Go Top] [Close Window]


