Holman AP, Rodriguez A, Elsaigh R, Elsaigh R, Wils. Indirect Detection of Swine Influenza Activity in Porcine Blood Using Raman Spectroscopy and Machine Learning. J Biophotonics. 2025 May 13:e202400575
Over the past decade, several swine influenza variants, including H1N1 and H1N2, have been periodically detected in swine. Raman spectroscopy (RS) offers a non-destructive, label-free, and rapid method for detecting pathogens by analyzing molecular vibrations to capture biochemical changes in samples. In this study, we examined blood serum from swine under different conditions: healthy, unvaccinated, or vaccinated against porcine reproductive and respiratory syndrome, and vaccinated swine infected with H1N1 and H1N2 variants of swine influenza. Our findings demonstrate that RS, when combined with machine learning algorithms such as partial least squares discriminant analysis and eXtreme gradient boosting discriminant analysis, can achieve accuracy rates of up to 97.8% in identifying the infection status and specific variant within porcine blood serum. This research highlights RS as a useful, novel tool for the detection of influenza variants in swine, significantly enhancing surveillance efforts by identifying animal health threats.
See Also:
Latest articles in those days:
- [preprint]Emergence and antigenic characterisation of influenza A(H3N2) viruses with hemagglutinin substitutions N158K and K189R during the 2024/25 influenza season 16 hours ago
- Epitope specificity shapes the CD4+ T cell response to influenza virus infection in mice 16 hours ago
- Vaccination against H5 HP avian influenza virus leads to persistent immune response in wild king penguins 1 days ago
- Molecular Epidemiology and Genetic Diversity of Influenza B Viruses Based on Whole-Genome Analysis in Japan and Myanmar, 2016-2020 1 days ago
- Assessing HPAI-H5 transmission risk across wild bird migratory flyways in the United States 1 days ago
[Go Top] [Close Window]


