Anika John, etc.,al. [preprint]Wastewater sequencing reveals the genomic landscape of Influenza A virus in Switzerland. https://doi.org/10.1101/2025.04.17.25325990
Influenza A virus poses significant public health challenges, causing seasonal outbreaks and pandemics. Its rapid evolution motivates continuous monitoring of circulating influenza genomes to inform vaccine and antiviral development. Wastewater-based surveillance offers an unbiased, cost-effective approach for genomic surveillance. We developed a novel tiling amplicon primer panel that covers diversity of influenza A virus, targeting segments of the surface proteins HA, NA, and M of subtypes H1N1 and H3N2. Using this panel, we sequenced nucleic acid extracts from 59 Swiss wastewater samples collected at four locations during the 2022/2023 and 2023/2024 winter seasons. We found that wastewater-based abundance estimates of the dominant H1N1 clades correlated with clinical-based estimates in the 2023/2024 season. Furthermore, wastewater-based sequencing revealed mutations in vaccine and drug target sites, consistent with clinical data. We demonstrate the effectiveness of wastewater-based genomic surveillance of influenza A, including lineage identification and mutation tracking to inform vaccine and antiviral strategies.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 13 hours ago
- Avian influenza overview September - November 2025 13 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 13 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 15 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 15 hours ago
[Go Top] [Close Window]


