Otto, S.P., Edgerton, S.V. Lengthy delays in H5N1 genome submissions to GISAID. Nat Biotechnol (2025)
Real-time surveillance of viral genomes enables the detection of new variants, the assessment of their impact on infectivity and disease severity, the estimation of rates of spread and routes of transmission using new phylogenetic tools, and evidence-based decision making by public health authorities, but it requires access to timely genomic information. Up-to-date genomic information also facilitates rapid, collaborative and interdisciplinary research and evidence-based public health responses (for example, vaccine development and deployment). Viral genetic changes have enabled transmission of the highly pathogenic avian influenza H5N1 to hundreds of species of birds and mammals, leading to repeated animal-to-human transmission events, including 72 reported to the World Health Organization in 2024. Two recent reports describe patients with severe respiratory infections in Canada and the United States with viruses that were polymorphic for genetic changes previously predicted by deep mutational scanning to improve binding to human cells. While these changes may have facilitated within-host viral replication, efficient human-to-human transmission of H5N1 has yet to be observed. However, this may change at any time. Real-time reporting of current H5N1 genomes is crucial, yet we find extensive delays of 7.5 months between H5N1 sample collection and submission to the Global Initiative on Sharing All Influenza Data (GISAID) repository for virus data and associated metadata.
Early on in the COVID-19 pandemic, a previous study highlighted lengthy delays in SARS-CoV-2 sequence submissions to GISAID, with an average of 48 days between sample collection and submission. This global analysis highlighted countries with rapid data sharing practices and pointed out others that lagged behind. Many countries subsequently improved pipelines for data submission, with collection-to-submission times (CST) now down to 30 days for samples submitted to GISAID in 2024. As an example, Canada had a CST of 88 days early in the pandemic, but now has a median CST for SARS-CoV-2 sequences of only 16 days. Such dramatic improvements aided global efforts to track variants and to monitor the spread and public health impacts of COVID-19 over the last few years.
Early on in the COVID-19 pandemic, a previous study highlighted lengthy delays in SARS-CoV-2 sequence submissions to GISAID, with an average of 48 days between sample collection and submission. This global analysis highlighted countries with rapid data sharing practices and pointed out others that lagged behind. Many countries subsequently improved pipelines for data submission, with collection-to-submission times (CST) now down to 30 days for samples submitted to GISAID in 2024. As an example, Canada had a CST of 88 days early in the pandemic, but now has a median CST for SARS-CoV-2 sequences of only 16 days. Such dramatic improvements aided global efforts to track variants and to monitor the spread and public health impacts of COVID-19 over the last few years.
See Also:
Latest articles in those days:
- [preprint]A Human H5N1 Influenza Virus Expressing Bioluminescence for Evaluating Viral Infection and Identifying Therapeutic Interventions 12 hours ago
- [preprint]A Live Attenuated Vaccine Candidate against Emerging Highly Pathogenic Cattle-Origin 2.3.4.4b H5N1 Viruses 12 hours ago
- Broad Mucosal and Systemic Immunity in Mice Induced by Intranasal Booster With a Novel Recombinant Adenoviral Based Vaccine Protects Against Divergent Influenza A Virus 17 hours ago
- [preprint]Characterising viral clearance kinetics in acute influenza 17 hours ago
- [preprint]Heterogeneity across mammalian- and avian-origin A(H1N1) influenza viruses influences viral infectivity following incubation with host bacteria from the human respiratory tract 17 hours ago
[Go Top] [Close Window]