Zhu Y, Cong Y, Sun Y, Sheng S, Liu C, Jiang J, Li. Molecular patterns of matrix protein 1 (M1): A strong predictor of adaptive evolution in H9N2 avian influenza viruses. Proc Natl Acad Sci U S A. 2025 Mar 4;122(9):e24239
The H9N2 subtype of avian influenza virus (AIV) emerges as a significant member of the influenza A virus family. However, the varying degrees of epidemiological dominance among different lineages or clades of H9N2 AIVs have not been fully clarified. The matrix protein M1, a key structural component of the virion, plays a crucial role in maintaining the viral structure and lifecycle. To elucidate the intrinsic relationship between the genetic patterns of M1 and the adaptive dynamics of H9N2 AIVs, this study focused on the five major evolutionary patterns of M1 and conducted in vitro and in vivo investigations from the perspectives of vRNP release after viral uncoating, polymerase activity, mRNA and vRNA levels, the nuclear export of vRNPs, plasma membrane-binding capacity, proliferation capacity, growth competitiveness, and transmission potential. The results revealed a strong correlation between the epidemiological dominance of H9N2 AIVs and the specific patterns of M1, with M1P5 standing out as particularly significant. This finding highlights the pivotal influence of the M1 gene patterns on the replication and transmission dynamics of H9N2 AIVs, thereby offering valuable insights into the mechanisms driving differences in adaptive evolution and shifts in epidemiological dominance within the H9N2 AIV population.
See Also:
Latest articles in those days:
- Intranasal influenza virus-vectored vaccine offers protection against clade 2.3.4.4b H5N1 infection in small animal models 4 hours ago
- Mapping of stakeholders in avian influenza surveillance in Canada 16 hours ago
- [preprint]Population Immunity to Hemagglutinin Head, Stalk and Neuraminidase of Highly Pathogenic Avian Influenza 2.3.4.4b A(H5N1) viruses in the United States and the Impact of Seasonal Influenza on 1 days ago
- Airborne Influenza Virus Surveillance Platform Using Paper-Based Immunosensors and a Growth-Based Virus Aerosol Concentrator 1 days ago
- [preprint]A Human H5N1 Influenza Virus Expressing Bioluminescence for Evaluating Viral Infection and Identifying Therapeutic Interventions 2 days ago
[Go Top] [Close Window]