Partlow EA, Jaeggi-Wong A, Planitzer SD, Berg N, L. Influenza A virus rapidly adapts particle shape to environmental pressures. Nat Microbiol. 2025 Feb 10
Enveloped viruses such as influenza A virus (IAV) often produce a mixture of virion shapes, ranging from 100 nm spheres to micron-long filaments. Spherical virions use fewer resources, while filamentous virions resist cell-entry pressures such as antibodies. While shape changes are believed to require genetic adaptation, the mechanisms of how viral mutations alter shape remain unclear. Here we find that IAV dynamically adjusts its shape distribution in response to environmental pressures. We developed a quantitative flow virometry assay to measure the shape of viral particles under various infection conditions (such as multiplicity, replication inhibition and antibody treatment) while using different combinations of IAV strains and cell lines. We show that IAV rapidly tunes its shape distribution towards spheres under optimal conditions but favours filaments under attenuation. Our work demonstrates that this phenotypic flexibility allows IAV to rapidly respond to environmental pressures in a way that provides dynamic adaptation potential in changing surroundings.
See Also:
Latest articles in those days:
- [preprint]Mass mortality at penguin mega-colonies due to avian cholera confounds H5N1 HPAIV surveillance in Antarctica 17 hours ago
- [preprint]How the 1918-1920 Influenza Pandemic Spread Across Switzerland - Spatial Patterns and Determinants of Incidence and Mortality 18 hours ago
- Influenza C Virus in Children With Acute Bronchiolitis and Febrile Seizures 22 hours ago
- Feasibility and Safety of Aerosolized Influenza Virus Challenge in Humans Using Two Modern Delivery Systems 22 hours ago
- Avian Influenza Weekly Update # 1026: 12 December 2025 2 days ago
[Go Top] [Close Window]


