-

nihao guest [ sign in / register ]
2025-4-2 13:33:09


Luo J, Wang X, Fan X, He Y, Du X, Chen YQ, Zhao Y. A novel graph neural network based approach for influenza-like illness nowcasting: exploring the interplay of temporal, geographical, and functional spatial features. BMC Public Health. 2025 Feb 1;25(1):408
submited by kickingbird at Feb, 3, 2025 13:36 PM from BMC Public Health. 2025 Feb 1;25(1):408

Background: Accurate and timely monitoring of influenza prevalence is essential for effective healthcare interventions. This study proposes a graph neural network (GNN)-based method to address the issue of cross-regional connectivity in predicting influenza outbreaks, aiming to achieve real-time and accurate influenza prediction.

Methods: We proposed a GNN-based approach with dual topology processing, capturing both geographical and socio-economic associations among counties/cities. The model inputs consist of weekly matrices of influenza-like illness (ILI) rates at city level, along with geographical topology and functional topology. The model construction involves temporal feature extraction through 1-dimensional gated causal convolution, spatial feature embedding through graph convolution, and additional adjustments to enhance spatiotemporal interaction exploration. Evaluation metrics include four commonly used measures: root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), and Pearson correlation (Corr).

Results: Our approach for predicting influenza outbreaks achieves competitive performance on real-world datasets (Corr = 0.8202; RMSE = 0.0017; MAE = 0.0013; MAPE = 0.0966), surpassing established baselines. Notably, our approach exhibits excellent capability in accurately and timely capturing short-term influenza outbreaks during the flu season, outperforming competitors across all evaluation metrics.

Conclusion: The incorporation of dual topology processing and the subsequent fusion mechanism allows the model to explore in-depth spatiotemporal feature interactions. Demonstrating superior performance, our approach shows great potential in early detection of flu trends for facilitating public health decisions and resource optimization.

See Also:

Latest articles in those days:

[Go Top]    [Close Window]

Related Pages:
Learn about the flu news, articles, events and more
Subscribe to the weekly F.I.C newsletter!


  

Site map  |   Contact us  |  Term of use  |  FAQs |  粤ICP备10094839号-1
Copyright ©www.flu.org.cn. 2004-2025. All Rights Reserved. Powered by FIC 4.0.1
  Email:webmaster@flu.org.cn