Schafers, J., Warren, C.J., Yang, J. et al. Pasteurisation temperatures effectively inactivate influenza A viruses in milk. Nat Commun 16, 1173 (2025)
In late 2023 an H5N1 lineage of high pathogenicity avian influenza virus (HPAIV) began circulating in American dairy cattle Concerningly, high titres of virus were detected in cows’ milk, raising the concern that milk could be a route of human infection. Cows’ milk is typically pasteurised to render it safe for human consumption, but the effectiveness of pasteurisation on influenza viruses in milk was uncertain. To assess this, here we evaluate heat inactivation in milk for a panel of different influenza viruses. This includes human and avian influenza A viruses (IAVs), an influenza D virus that naturally infects cattle, and recombinant IAVs carrying contemporary avian or bovine H5N1 glycoproteins. At pasteurisation temperatures of 63?°C and 72?°C, we find that viral infectivity is rapidly lost and becomes undetectable before the times recommended for pasteurisation (30?minutes and 15?seconds, respectively). We then show that an H5N1 HPAIV in milk is effectively inactivated by a comparable treatment, even though its genetic material remains detectable. We conclude that pasteurisation conditions should effectively inactivate H5N1 HPAIV in cows’ milk, but that unpasteurised milk could carry infectious influenza viruses.
See Also:
Latest articles in those days:
- [preprint]Mass mortality at penguin mega-colonies due to avian cholera confounds H5N1 HPAIV surveillance in Antarctica 11 hours ago
- [preprint]How the 1918-1920 Influenza Pandemic Spread Across Switzerland - Spatial Patterns and Determinants of Incidence and Mortality 11 hours ago
- Influenza C Virus in Children With Acute Bronchiolitis and Febrile Seizures 15 hours ago
- Feasibility and Safety of Aerosolized Influenza Virus Challenge in Humans Using Two Modern Delivery Systems 15 hours ago
- Avian Influenza Weekly Update # 1026: 12 December 2025 1 days ago
[Go Top] [Close Window]


