Zhang L, Yang Q, Shao Y, Ding S, Guo J, Gao GF, De. Influenza A virus NS2 protein acts on vRNA-resident polymerase to drive the transcription to replication switch. Nucleic Acids Res. 2025 Jan 24;53(3):gkaf027
The heterotrimeric RNA-dependent RNA polymerase (RdRp) of influenza A virus catalyzes viral RNA transcription (vRNA→mRNA) and replication (vRNA→cRNA→vRNA) by adopting different conformations. A switch from transcription to replication occurs at a relatively late stage of infection. We recently reported that the viral NS2 protein, expressed at later stages from a spliced transcript of the NS segment messenger RNA (mRNA), inhibits transcription, promotes replication and plays a key role in the transcription-to-replication switch. In this study, we performed comprehensive functional analyses to elucidate how NS2 promotes viral genome replication. Using a cell-based single-step RNP reconstitution assay, we found that NS2 specifically promotes the first-step vRNA-to-cRNA synthesis. Further investigation revealed that this promotion is tightly associated with the intrinsic properties of the 3´-vRNA promoter. Employing a highly sensitive complementation reporter assay, we demonstrated that NS2 associates more strongly with the vRNA-resident RdRp than the cRNA-resident RdRp. These findings were further validated through in vitro replication analyses. We, therefore, propose that influenza A virus NS2 protein targets vRNA-resident RdRp to drive the transcription-to-replication switch during infection.
See Also:
Latest articles in those days:
- Intranasal influenza virus-vectored vaccine offers protection against clade 2.3.4.4b H5N1 infection in small animal models 4 hours ago
- Mapping of stakeholders in avian influenza surveillance in Canada 16 hours ago
- [preprint]Population Immunity to Hemagglutinin Head, Stalk and Neuraminidase of Highly Pathogenic Avian Influenza 2.3.4.4b A(H5N1) viruses in the United States and the Impact of Seasonal Influenza on 1 days ago
- Airborne Influenza Virus Surveillance Platform Using Paper-Based Immunosensors and a Growth-Based Virus Aerosol Concentrator 1 days ago
- [preprint]A Human H5N1 Influenza Virus Expressing Bioluminescence for Evaluating Viral Infection and Identifying Therapeutic Interventions 2 days ago
[Go Top] [Close Window]