Smith S, Rayner JO, Kim JH. Fluorofurimazine, a novel NanoLuc substrate, enhances real-time tracking of influenza A virus infection without altering pathogenicity in mice. Microbiol Spectr. 2025 Jan 27:e0268924
Bioluminescence imaging (BLI) using engineered bioluminescent viruses has emerged as a powerful tool for real-time, noninvasive monitoring of viral replication in living animals. While traditional luciferase-based systems, such as firefly luciferase, have been widely used, the NanoLuc luciferase system offers distinct advantages, including its significantly smaller gene size, increased brightness, and independence from ATP as a cofactor, allowing for extracellular detection. However, the utility of NanoLuc has been limited by its traditional substrate, furimazine, which exhibits poor water solubility and potential cytotoxicity. In this study, we assessed fluorofurimazine (FFz), a novel substrate with improved water solubility and bioavailability, for tracking influenza A virus (IAV) replication in mice. Our findings demonstrate that FFz substantially enhances detection sensitivity in both respiratory organs and brain tissue without increasing toxicity, enabling more precise and sustained monitoring of IAV replication. In vitro, FFz generated higher photon flux at lower concentrations compared to furimazine, translating into superior in vivo sensitivity with reduced toxicity. Crucially, FFz did not alter the pathogenicity of IAV in mice, even at sublethal infectious doses, reinforcing its suitability for use in BLI-based viral pathogenicity studies. These results suggest that combining FFz with NanoLuc provides a more effective and less toxic approach for real-time tracking of viral infections in preclinical models.
See Also:
Latest articles in those days:
- Phylogenetic Analysis of Highly Pathogenic Avian Influenza H7 Viruses in Australia and New Zealand Suggests Local Viral Evolution 17 hours ago
- AI-Powered Identification of Human Cell Surface Protein Interactors of the Hemagglutinin Glycoprotein of High-Pandemic-Risk H5N1 Influenza Virus 17 hours ago
- Seasonal Influenza Vaccination Uptake and Intentions Among Nursing Students in Hong Kong 17 hours ago
- Intranasal Mosaic H1N1 Live Attenuated Influenza Vaccine Elicits Broad Cross-Reactive Immunity and Protection Against Group 1 and 2 Influenza A Viruses 17 hours ago
- Changing Landscape of Pediatric Influenza in Northern Mexico: A Comparative Clinical and Virological Study 17 hours ago
[Go Top] [Close Window]


