Zhang Y, Wu J, Lin Q, Ou J, Qi X, Zheng Y, Li F, W. Infection Tracing and Virus Genomic Analysis of Two Cases of Human Infection with Avian Influenza A(H5N6) - Fujian Province, China, April-May 2024. China CDC Wkly. 2025 Jan 17;7(3):107-112
What is known about this topic?: Global human cases of zoonotic influenza A(H5N6) have increased significantly in recent years, primarily due to widespread circulation of clade 2.3.4.4b virus since 2020. Concurrent with this trend, sporadic human infections with clade 2.3.4.4h H5N6 avian influenza virus continue to occur. The high mortality rate associated with H5N6 virus infections has emerged as a critical public health concern.
What is added by this report?: Through comprehensive field epidemiological investigations and laboratory analyses, we identified the infection sources for these cases and conclusively ruled out human-to-human transmission. Genetic analyses revealed that while the virus maintains its avian host tropism, it has acquired mutations that may enhance human receptor binding affinity, viral replication capacity, pathogenicity, and neuraminidase inhibitor resistance.
What are the implications for public health practice?: The ongoing viral mutations increase the potential for H5 subtype avian influenza viruses to overcome species barriers and cause human epidemics. Enhanced surveillance strategies incorporating advanced technologies, such as metagenomic sequencing, are essential for early risk detection and management. Special attention should be directed toward cancer patients and immunocompromised individuals, who demonstrate increased susceptibility to avian influenza virus infections and require targeted prevention and control measures.
What is added by this report?: Through comprehensive field epidemiological investigations and laboratory analyses, we identified the infection sources for these cases and conclusively ruled out human-to-human transmission. Genetic analyses revealed that while the virus maintains its avian host tropism, it has acquired mutations that may enhance human receptor binding affinity, viral replication capacity, pathogenicity, and neuraminidase inhibitor resistance.
What are the implications for public health practice?: The ongoing viral mutations increase the potential for H5 subtype avian influenza viruses to overcome species barriers and cause human epidemics. Enhanced surveillance strategies incorporating advanced technologies, such as metagenomic sequencing, are essential for early risk detection and management. Special attention should be directed toward cancer patients and immunocompromised individuals, who demonstrate increased susceptibility to avian influenza virus infections and require targeted prevention and control measures.
See Also:
Latest articles in those days:
- Intranasal influenza virus-vectored vaccine offers protection against clade 2.3.4.4b H5N1 infection in small animal models 4 hours ago
- Mapping of stakeholders in avian influenza surveillance in Canada 16 hours ago
- [preprint]Population Immunity to Hemagglutinin Head, Stalk and Neuraminidase of Highly Pathogenic Avian Influenza 2.3.4.4b A(H5N1) viruses in the United States and the Impact of Seasonal Influenza on 1 days ago
- Airborne Influenza Virus Surveillance Platform Using Paper-Based Immunosensors and a Growth-Based Virus Aerosol Concentrator 1 days ago
- [preprint]A Human H5N1 Influenza Virus Expressing Bioluminescence for Evaluating Viral Infection and Identifying Therapeutic Interventions 2 days ago
[Go Top] [Close Window]