Shen J, Li J, Shen Q, Hou J, Zhang C, Bai H, Ai X,. Proteolysis-targeting influenza vaccine strains induce broad-spectrum immunity and in vivo protection. Nat Microbiol. 2025 Jan 15
Generating effective live vaccines from intact viruses remains challenging owing to considerations of safety and immunogenicity. Approaches that can be applied in a systematic manner are needed. Here we created a library of live attenuated influenza vaccines by using diverse cellular E3 ubiquitin ligases to generate proteolysis-targeting (PROTAR) influenza A viruses. PROTAR viruses were engineered to be attenuated by the ubiquitin-proteasome system, which mediates viral protein degradation in conventional host cells, but allows efficient replication in engineered cell lines for large-scale manufacturing. Depending on the degron-E3 ligase pairs, viruses showed varying degrees of attenuation. In animal models, PROTAR viruses were highly attenuated and elicited robust, broad, strain-dependent humoral, mucosal and cellular immunity. In addition, they provided cross-reactive protection against homologous and heterologous viral challenges. This study provides a systematic approach for developing safe and effective vaccines, with potential applications in designing live attenuated vaccines against other pathogens.
See Also:
Latest articles in those days:
- Based on the MaxEnt model the analysis of influencing factors and simulation of potential risk areas of human infection with avian influenza A (H7N9) in China 19 hours ago
- WPRO/WHO: Avian Influenza Weekly Update, 17 January 2025 2 days ago
- Retrospective modelling of the disease and mortality burden of the 1918-1920 influenza pandemic in Zurich, Switzerland 3 days ago
- Avian Influenza incidents and depopulation methods Feb 2022 to June 2024 in U.S. 3 days ago
- [preprint]From Birds to Bovine: A Review and Critical Analysis of the Outbreaks of Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b in the United States 3 days ago
[Go Top] [Close Window]