Ma W, Ren C, Shi L, Meng B, Feng Y, Zhang Y. Isoleucine at position 137 of Hemagglutinin acts as a Mammalian adaptation marker of H9N2 Avian influenza virus. Emerg Microbes Infect. 2025 Jan 16:2455597
The H9N2 subtype of avian influenza virus (AIV) is widely distributed among poultry and wild birds and is also a threat to humans. During AIV active surveillance in Liaoning province from 2015 to 2016, we identified ten H9N2 strains exhibiting different lethality to chick embryos. Two representative strains, A/chicken/China/LN07/2016 (CKLN/07) and A/chicken/China/LN17/2016 (CKLN/17), with similar genomic background but different chick embryo lethality, were chosen to evaluate the molecular basis for this difference. A series of reassortants between CKLN/07 and CKLN/17 were generated and their chick embryo lethality was assessed. We found that the isoleucine (I) residue at position 137 (H3 numbering) in the hemagglutinin (HA) was responsible for the chick embryo lethality of the H9N2 virus. Further studies revealed that the threonine (T) to I mutation at HA position 137 enhanced viral replication in vitro and in vivo. Moreover, the HA-T137I substitution in H9N2 avian influenza virus increased the guinea pig transmission efficiency. We also found that the HA-T137I substitution was critical for α2,6-linked sialic acid binding preference and HA activation and stability of H9N2 virus. Our findings demonstrated that HA-137I is a key molecular marker for mammalian adaptation of H9N2 AIV.
See Also:
Latest articles in those days:
- Intranasal influenza virus-vectored vaccine offers protection against clade 2.3.4.4b H5N1 infection in small animal models 4 hours ago
- Mapping of stakeholders in avian influenza surveillance in Canada 16 hours ago
- [preprint]Population Immunity to Hemagglutinin Head, Stalk and Neuraminidase of Highly Pathogenic Avian Influenza 2.3.4.4b A(H5N1) viruses in the United States and the Impact of Seasonal Influenza on 1 days ago
- Airborne Influenza Virus Surveillance Platform Using Paper-Based Immunosensors and a Growth-Based Virus Aerosol Concentrator 1 days ago
- [preprint]A Human H5N1 Influenza Virus Expressing Bioluminescence for Evaluating Viral Infection and Identifying Therapeutic Interventions 2 days ago
[Go Top] [Close Window]