Goel V, Ding J, Hatuwal B, Giri E, Deliberto TJ, L. Ecological Drivers of Evolution of Swine Influenza in the United States: A Review. Emerg Microbes Infect. 2025 Jan 16:2455598
Influenza A viruses (IAVs) pose a major public health threat due to their wide host range and pandemic potential. Pigs have been proposed as "mixing vessels" for avian, swine, and human IAVs, significantly contributing to influenza ecology. In the United States, IAVs are enzootic in commercial swine farming operations, with numerous genetic and antigenic IAV variants having emerged in the past two decades. However, the dynamics of intensive swine farming systems and their interactions with ecological factors influencing IAV evolution have not been systematically analyzed. This review examines the evolution of swine IAVs in commercial farms, highlighting the role of multilevel ecological factors. A total of 61 articles published after 2000 were reviewed, with most studies conducted after 2009 in Midwestern US, followed by Southeast and South-central US. The findings reveal that ecological factors at multiple spatial scales, such as regional transportation networks, interconnectedness of swine operations, farm environments, and presence of high-density, low-genetic diversity herds, can facilitate virus transmission and enhance virus evolution. Additionally, interactions at various interfaces, such as between commercial swine and feral swine, humans, or wild birds contribute to the increase in genetic diversity of swine IAVs. The review underscores the need for comprehensive studies and improved data collection to better understand the ecological dynamics influencing swine IAV evolution. This understanding is crucial for mitigating disease burdens in swine production and reducing the risk of zoonotic influenza outbreaks.
See Also:
Latest articles in those days:
- Intranasal influenza virus-vectored vaccine offers protection against clade 2.3.4.4b H5N1 infection in small animal models 4 hours ago
- Mapping of stakeholders in avian influenza surveillance in Canada 16 hours ago
- [preprint]Population Immunity to Hemagglutinin Head, Stalk and Neuraminidase of Highly Pathogenic Avian Influenza 2.3.4.4b A(H5N1) viruses in the United States and the Impact of Seasonal Influenza on 1 days ago
- Airborne Influenza Virus Surveillance Platform Using Paper-Based Immunosensors and a Growth-Based Virus Aerosol Concentrator 1 days ago
- [preprint]A Human H5N1 Influenza Virus Expressing Bioluminescence for Evaluating Viral Infection and Identifying Therapeutic Interventions 2 days ago
[Go Top] [Close Window]