Perry SS, Brice DC, Sakr AA, Kandeil A, DeBeaucham. Modulation of cytokeratin and cytokine/chemokine expression following influenza virus infection of differentiated human tonsillar epithelial cells. J Virol. 2025 Jan 10:e0146024
The tonsils have been identified as a site of replication for Epstein-Barr virus, adenovirus, human papillomavirus, and other respiratory viruses. Human tonsil epithelial cells (HTECs) are a heterogeneous group of actively differentiating cells. Here, we investigated the cellular features and susceptibility of differentiated HTECs to specific influenza viruses, including expression of avian-type and mammalian-type sialic acid (SA) receptors, viral replication dynamics, and the associated cytokine secretion profiles. We found that differentiated HTECs possess more abundant α2,3-linked SA (preferentially bound by avian influenza viruses) than α2,6-linked SA (preferentially bound by mammalian strains). This dual receptor expression suggests a role in influenza virus adaptation and tropism within the tonsils by facilitating the binding and entry of multiple influenza virus strains. Our results indicated the susceptibility of differentiated HTECs to a wide range of influenza viruses from human, swine, and avian hosts. Virus production for most strains was detected as early as 1 day post-infection (dpi), and typically peaked by 3 dpi. However, pandemic H1N1 virus showed remarkably delayed replication kinetics that did not peak until at least 7 dpi. Notably, influenza virus infection impacted the expression of cytokeratins in HTEC cultures, which correlated with altered cytokine secretion patterns. These patterns varied within the strains but were most distinct in swine H3N2 infection. In conclusion, differentiated HTECs exhibited a strain-specific pattern of influenza virus replication and innate immune responses that included changes in cytokeratin and cytokine expression. These studies shed light on the complex interplay between influenza viruses and host cells in the tonsils.
See Also:
Latest articles in those days:
- Phylogenetic Analysis of Highly Pathogenic Avian Influenza H7 Viruses in Australia and New Zealand Suggests Local Viral Evolution 6 hours ago
- AI-Powered Identification of Human Cell Surface Protein Interactors of the Hemagglutinin Glycoprotein of High-Pandemic-Risk H5N1 Influenza Virus 6 hours ago
- Seasonal Influenza Vaccination Uptake and Intentions Among Nursing Students in Hong Kong 6 hours ago
- Intranasal Mosaic H1N1 Live Attenuated Influenza Vaccine Elicits Broad Cross-Reactive Immunity and Protection Against Group 1 and 2 Influenza A Viruses 6 hours ago
- Changing Landscape of Pediatric Influenza in Northern Mexico: A Comparative Clinical and Virological Study 6 hours ago
[Go Top] [Close Window]


