Kieran TJ, Sun X, Maines TR, Belser JA. Optimal thresholds and key parameters for predicting influenza A virus transmission events in ferrets. Npj Viruses. 2024;2(1):64
Although assessments of influenza A virus transmissibility in the ferret model play a critical role in pandemic risk evaluations, few studies have investigated which virological data collected from virus-inoculated animals are most predictive of subsequent virus transmission to na?ve contacts. We compiled viral titer data from >475 ferrets inoculated with 97 contemporary IAV (including high- and low-pathogenicity avian, swine-origin, and human viruses of multiple HA subtypes) that served as donors for assessments of virus transmission in the presence of direct contact (DCT) or via respiratory droplets (RDT). A diversity of molecular determinants, clinical parameters, and infectious titer measurements and derived quantities were examined to identify which metrics were most statistically supported with transmission outcome. Higher viral loads in nasal wash (NW) specimens were strongly associated with higher transmission frequencies in DCT, but not RDT models. However, viruses that reached peak titers in NW specimens early (day 1 p.i.) were strongly associated with higher transmission in both models. Interestingly, viruses with ´intermediate´ transmission outcomes (33-66%) had NW titers and derived quantities more similar to non-transmissible viruses (<33%) in a DCT setting, but with efficiently transmissible viruses (>67%) in a RDT setting. Machine learning was employed to further assess the predictive role of summary measures and varied interpretation of intermediate transmission outcomes in both DCT and RDT models, with models employing these different thresholds yielding high performance metrics against both internal and external datasets. Collectively, these findings suggest that higher viral load in inoculated animals can be predictive of DCT outcomes, whereas the timing of when peak titers are detected in inoculated animals can inform RDT outcomes. Identification that intermediate transmission outcomes should be contextualized relative to the transmission mode assessed provides needed refinement towards improving interpretation of ferret transmission studies in the context of pandemic risk assessment.
See Also:
Latest articles in those days:
- Phylogenetic Analysis of Highly Pathogenic Avian Influenza H7 Viruses in Australia and New Zealand Suggests Local Viral Evolution 6 hours ago
- AI-Powered Identification of Human Cell Surface Protein Interactors of the Hemagglutinin Glycoprotein of High-Pandemic-Risk H5N1 Influenza Virus 6 hours ago
- Seasonal Influenza Vaccination Uptake and Intentions Among Nursing Students in Hong Kong 6 hours ago
- Intranasal Mosaic H1N1 Live Attenuated Influenza Vaccine Elicits Broad Cross-Reactive Immunity and Protection Against Group 1 and 2 Influenza A Viruses 6 hours ago
- Changing Landscape of Pediatric Influenza in Northern Mexico: A Comparative Clinical and Virological Study 6 hours ago
[Go Top] [Close Window]


