Denz PJ, Speaks S, Kenney AD, Eddy AC, Papa JL, Ro. Innate immune control of influenza virus interspecies adaptation via IFITM3. Nat Commun. 2024 Oct 30;15(1):9375
Influenza virus pandemics are caused by viruses from animal reservoirs that adapt to efficiently infect and replicate in human hosts. Here, we investigate whether Interferon-Induced Transmembrane Protein 3 (IFITM3), a host antiviral factor with known human deficiencies, plays a role in interspecies virus infection and adaptation. We find that IFITM3-deficient mice and human cells can be infected with low doses of avian influenza viruses that fail to infect WT counterparts, identifying a new role for IFITM3 in controlling the minimum infectious virus dose threshold. Remarkably, influenza viruses passaged through Ifitm3-/- mice exhibit enhanced host adaptation, a result that is distinct from viruses passaged in mice deficient for interferon signaling, which exhibit attenuation. Our data demonstrate that IFITM3 deficiency uniquely facilitates potentially zoonotic influenza virus infections and subsequent adaptation, implicating IFITM3 deficiencies in the human population as a vulnerability for emergence of new pandemic viruses.
See Also:
Latest articles in those days:
- Dual receptor-binding, infectivity, and transmissibility of an emerging H2N2 low pathogenicity avian influenza virus 19 hours ago
- Validation of a reduction in time for avian influenza virus isolation using specific pathogen-free embryonated chicken eggs 19 hours ago
- Unveiling the role of long non-coding RNAs in chicken immune response to highly pathogenic avian influenza H5N1 infection 19 hours ago
- Influenza at the human-animal interface summary and assessment, 1 November 2024 19 hours ago
- [preprint]Global risk mapping of highly pathogenic avian influenza H5N1 and H5Nx in the light of epidemic episodes occurring from 2020 onward 2 days ago
[Go Top] [Close Window]