Liu Y, Xu J, Wei C, Xu Y, Lyu C, Sun M, Zheng Y, C. Detection of H1N1 Influenza Virus in the Bile of a Severe Influenza Mouse Model. Influenza Other Respir Viruses. 2024 Oct;18(10):e7
Aims: Influenza virus infection may lead to fatal complications including multi-organ failure and sepsis. The influenza virus was detected in various extra-pulmonary organs in autopsy studies during the 2009 pandemic. However, limited research has been conducted on the presence of viral particle or viral components in the peripheral blood.
Methods and results: We established a mouse model for severe H1N1 influenza. The bile and blood samples were collected over time and inoculated into embryonated chicken eggs. We detected live influenza virus in bile and blood samples in early infection. Immunofluorescence showed influenza viral components in the liver tissue. No live virus was isolated in the bile in mice intragastrically administered with influenza virus, indicating that the virus was spread from the blood stream. Targeted metabolomics analysis of bile acid and liver tissues showed that a secondary bile acid (3-dehydrocholic acid) was decreased after influenza H1N1 infection. Genes related with fatty acid metabolism and bile secretion pathways were down-regulated in liver after influenza virus infection.
Conclusion: Our study indicated that influenza virus viremia is present in severe influenza, and that the liver is a target organ for influenza viral sepsis.
Methods and results: We established a mouse model for severe H1N1 influenza. The bile and blood samples were collected over time and inoculated into embryonated chicken eggs. We detected live influenza virus in bile and blood samples in early infection. Immunofluorescence showed influenza viral components in the liver tissue. No live virus was isolated in the bile in mice intragastrically administered with influenza virus, indicating that the virus was spread from the blood stream. Targeted metabolomics analysis of bile acid and liver tissues showed that a secondary bile acid (3-dehydrocholic acid) was decreased after influenza H1N1 infection. Genes related with fatty acid metabolism and bile secretion pathways were down-regulated in liver after influenza virus infection.
Conclusion: Our study indicated that influenza virus viremia is present in severe influenza, and that the liver is a target organ for influenza viral sepsis.
See Also:
Latest articles in those days:
- Wastewater-based estimation of temporal variation in shedding amount of influenza A virus and clinically identified cases using the PRESENS model 1 days ago
- Novel H16N3 avian influenza viruses isolated from migratory gulls in China in 2023 1 days ago
- [preprint]The crucial role of intercellular calcium wave propagation triggered by influenza A virus in promoting infection 3 days ago
- Targets of influenza human T-cell response are mostly conserved in H5N1 3 days ago
- Surveillance of Highly Pathogenic Avian Influenza Virus in Wild Canids from Pennsylvania, USA 4 days ago
[Go Top] [Close Window]