Jallow MM, Barry MA, Ndiaye NK, Touré CT, Talla C,. Genetic and antigenic characterization of influenza A(H3N2) virus after 13 consecutive years of influenza surveillance in Senegal, 2010-2022. J Med Virol. 2024 Oct;96(10):e70010
Despite decades of influenza surveillance in many African countries, little is known about the evolutionary dynamics of seasonal influenza viruses. This study aimed to characterize the epidemiological, genetic and antigenic profiles of A/H3N2 viruses in Senegal from 2010 to 2022. A/H3N2 infection was confirmed using reverse transcription-polymerase chain reaction. Subsequently, a representative of A/H3N2 isolates was selected for genome sequencing. Predicted vaccine efficacy was measured using the Pepitope model. During the study period, 22638 samples were tested and influenza was detected in 31.8%, among which type A was confirmed in 78.1%. Of the Influenza A cases, the H3N2 subtype was detected in 29.8%, peaking at expected times during the rainy season. Genome sequencing of 123A/H3N2 isolates yielded 24 complete and 99 partial genomic sequences. Phylogenetic analysis revealed the circulation of multiple clades of A/H3N2 in Senegal, including 2a.3, 3C.2 and 3C.3a. A/H3N2 isolates were mainly susceptible to the influenza antiviral drugs oseltamivir and zanamivir, but the primary adamantine-resistance marker, S31N was encountered in all isolates. At least nine potential N-linked glycosylation sites were predicted among A/H3N2 strains, six of which (at positions 24, 38, 79, 181, 262 and 301) remains conserved among all isolates. Antigenic distances between circulating strains and vaccine viruses indicated varying vaccine efficacies, from suboptimal to moderate protection. The findings emphasize the need to enhance local genomic and antigenic surveillance and further research on influenza epidemiology and genetic evolution in sub-Saharan Africa.
See Also:
Latest articles in those days:
- Comprehensive Molecular Epidemiology of Influenza Viruses in Brazil: Insights from a Nationwide Analysis 1 days ago
- Pandemic preparedness of effective vaccines for the outbreak of newly H5N1 highly pathogenic avian influenza virus 1 days ago
- The PB1 protein of H9N2 influenza A virus inhibits antiviral innate immunity by targeting MAVS for TRIM25-mediated autophagic degradation 1 days ago
- The evolution of hemagglutinin-158 and neuraminidase-88 glycosylation sites modulates antigenicity and pathogenicity of clade 2.3.2.1 H5N1 avian influenza viruses 1 days ago
- Evidence of Influenza A(H5N1) Spillover Infections in Horses, Mongolia 1 days ago
[Go Top] [Close Window]