Ricker R, Perea Lopez N, Terrones M, Loew M, Ghedi. Rapid and label-free influenza A virus subtyping using surface-enhanced Raman spectroscopy with incident-wavelength analysis. Biomed Opt Express. 2024 Aug 7;15(9):5081-5097.
Early virus identification is a key component of both patient treatment and epidemiological monitoring. In the case of influenza A virus infections, where the detection of subtypes associated with bird flu in humans could lead to a pandemic, rapid subtype-level identification is important. Surface-enhanced Raman spectroscopy coupled with machine learning can be used to rapidly detect and identify viruses in a label-free manner. As there is a range of available excitation wavelengths for performing Raman spectroscopy, we must choose the best one to permit discrimination between highly similar subtypes of a virus. We show that the spectra produced by influenza A subtypes H1N1 and H3N2 exhibit a higher degree of dissimilarity when using 785 nm excitation wavelength in comparison with 532 nm excitation wavelength. Furthermore, the cross-validated area under the curve (AUC) for identification was higher for the 785 nm excitation, reaching 0.95 as compared to 0.86 for 532 nm. Ultimately, this study suggests that exciting with a 785 nm wavelength is better able to differentiate two closely related influenza viruses and likely can extend to other closely related pathogens.
See Also:
Latest articles in those days:
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 5 hours ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 6 hours ago
- Avian raptors are indicator species and victims of high pathogenicity avian influenza virus HPAIV H5N1 (clade 2.3.4.4b) in Germany 6 hours ago
- Genetic and pathological analysis of hooded cranes (Grus monacha) naturally infected with clade 2.3.4.4b highly pathogenic avian influenza H5N1 virus in South Korea in the winter of 2022 6 hours ago
- H1N1 swine influenza viruses upregulate NEU1 expression through histone H3 acetylation regulated by HDAC2 6 hours ago
[Go Top] [Close Window]