Hailey Robertson, etc.,al. [preprint]Understanding Ecological Systems Using Knowledge Graphs: An Application to Highly Pathogenic Avian Influenza. https://doi.org/10.1101/2024.09.05.611483
Ecological systems are complex. Representing heterogeneous knowledge about ecological systems is a pervasive challenge because data are generated from many subdisciplines, exist in disparate sources, and only capture a subset of important interactions underpinning system structure, resilience, and dynamics. Knowledge graphs have been successfully applied to organize heterogeneous data systematically and to predict new linkages representing unobserved relationships in complex systems. Though not previously applied broadly in ecology, knowledge graphs have much to offer in an era of global change when system dynamics are responding to rapid changes across multiple scales simultaneously. We developed a knowledge graph to demonstrate the method´s utility for ecological problems focused on highly pathogenic avian influenza (HPAI), a highly transmissible virus with a broad animal host range, wide geographic distribution, and rapid evolution with pandemic potential. We describe the development of a graph to include a wide range of data related to HPAI including pathogen-host associations, animal species distributions, and human population demographics, using a semantic ontology that defines relationships within the data and between datasets. We use the graph to perform a set of proof-of concept analyses validating the method and identifying new relationships and features of HPAI ecology, underscoring the generalizable value of knowledge graphs to ecology including their utility in revealing previously known relationships between entities and generating testable hypotheses in support of a deeper mechanistic understanding of ecological systems.
See Also:
Latest articles in those days:
- Phylogenetic Analysis of Highly Pathogenic Avian Influenza H7 Viruses in Australia and New Zealand Suggests Local Viral Evolution 21 hours ago
- AI-Powered Identification of Human Cell Surface Protein Interactors of the Hemagglutinin Glycoprotein of High-Pandemic-Risk H5N1 Influenza Virus 21 hours ago
- Seasonal Influenza Vaccination Uptake and Intentions Among Nursing Students in Hong Kong 21 hours ago
- Intranasal Mosaic H1N1 Live Attenuated Influenza Vaccine Elicits Broad Cross-Reactive Immunity and Protection Against Group 1 and 2 Influenza A Viruses 21 hours ago
- Changing Landscape of Pediatric Influenza in Northern Mexico: A Comparative Clinical and Virological Study 21 hours ago
[Go Top] [Close Window]


