Hailey Robertson, etc.,al. [preprint]Understanding Ecological Systems Using Knowledge Graphs: An Application to Highly Pathogenic Avian Influenza. https://doi.org/10.1101/2024.09.05.611483
Ecological systems are complex. Representing heterogeneous knowledge about ecological systems is a pervasive challenge because data are generated from many subdisciplines, exist in disparate sources, and only capture a subset of important interactions underpinning system structure, resilience, and dynamics. Knowledge graphs have been successfully applied to organize heterogeneous data systematically and to predict new linkages representing unobserved relationships in complex systems. Though not previously applied broadly in ecology, knowledge graphs have much to offer in an era of global change when system dynamics are responding to rapid changes across multiple scales simultaneously. We developed a knowledge graph to demonstrate the method´s utility for ecological problems focused on highly pathogenic avian influenza (HPAI), a highly transmissible virus with a broad animal host range, wide geographic distribution, and rapid evolution with pandemic potential. We describe the development of a graph to include a wide range of data related to HPAI including pathogen-host associations, animal species distributions, and human population demographics, using a semantic ontology that defines relationships within the data and between datasets. We use the graph to perform a set of proof-of concept analyses validating the method and identifying new relationships and features of HPAI ecology, underscoring the generalizable value of knowledge graphs to ecology including their utility in revealing previously known relationships between entities and generating testable hypotheses in support of a deeper mechanistic understanding of ecological systems.
See Also:
Latest articles in those days:
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 4 hours ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 6 hours ago
- Avian raptors are indicator species and victims of high pathogenicity avian influenza virus HPAIV H5N1 (clade 2.3.4.4b) in Germany 6 hours ago
- Genetic and pathological analysis of hooded cranes (Grus monacha) naturally infected with clade 2.3.4.4b highly pathogenic avian influenza H5N1 virus in South Korea in the winter of 2022 6 hours ago
- H1N1 swine influenza viruses upregulate NEU1 expression through histone H3 acetylation regulated by HDAC2 6 hours ago
[Go Top] [Close Window]