Forna A, Weedop KB, Damodaran L, Hassell N, Kondor. Sequence-based detection of emerging antigenically novel influenza A viruses. Proc Biol Sci. 2024 Aug;291(2028):20240790
The detection of evolutionary transitions in influenza A (H3N2) viruses´ antigenicity is a major obstacle to effective vaccine design and development. In this study, we describe Novel Influenza Virus A Detector (NIAViD), an unsupervised machine learning tool, adept at identifying these transitions, using the HA1 sequence and associated physico-chemical properties. NIAViD performed with 88.9% (95% CI, 56.5-98.0%) and 72.7% (95% CI, 43.4-90.3%) sensitivity in training and validation, respectively, outperforming the uncalibrated null model-33.3% (95% CI, 12.1-64.6%) and does not require potentially biased, time-consuming and costly laboratory assays. The pivotal role of the Boman´s index, indicative of the virus´s cell surface binding potential, is underscored, enhancing the precision of detecting antigenic transitions. NIAViD´s efficacy is not only in identifying influenza isolates that belong to novel antigenic clusters, but also in pinpointing potential sites driving significant antigenic changes, without the reliance on explicit modelling of haemagglutinin inhibition titres. We believe this approach holds promise to augment existing surveillance networks, offering timely insights for the development of updated, effective influenza vaccines. Consequently, NIAViD, in conjunction with other resources, could be used to support surveillance efforts and inform the development of updated influenza vaccines.
See Also:
Latest articles in those days:
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 9 hours ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 11 hours ago
- Avian raptors are indicator species and victims of high pathogenicity avian influenza virus HPAIV H5N1 (clade 2.3.4.4b) in Germany 11 hours ago
- Genetic and pathological analysis of hooded cranes (Grus monacha) naturally infected with clade 2.3.4.4b highly pathogenic avian influenza H5N1 virus in South Korea in the winter of 2022 11 hours ago
- H1N1 swine influenza viruses upregulate NEU1 expression through histone H3 acetylation regulated by HDAC2 11 hours ago
[Go Top] [Close Window]