Bhattacharya A, Bagheri N, Boxer SG. A Fluorogenic Pseudoinfection Assay to Probe Transfer and Distribution of Influenza Viral Contents to Target Vesicles. Anal Chem. 2024 Jul 31
Fusion of enveloped viruses with endosomal membranes and subsequent release of the viral genome into the cytoplasm are crucial to the viral infection cycle. It is often modeled by performing fusion between virus particles and target lipid vesicles. We utilized fluorescence microscopy to characterize the kinetic aspects of the transfer of influenza viral ribonucleoprotein (vRNP) complexes to target vesicles and their spatial distribution within the fused volumes to gain deeper insight into the mechanistic aspects of endosomal escape. The fluorogenic RNA-binding dye QuantiFluor (Promega) was found to be well-suited for direct and sensitive microscopic observation of vRNPs which facilitated background-free detection and kinetic analysis of fusion events on a single particle level. To determine the extent to which the viral contents are transferred to the target vesicles through the fusion pore, we carried out virus-vesicle fusion in a side-by-side fashion. Measurement of the Euclidean distances between the centroids of superlocalized membrane and content dye signals within the fused volumes allowed determination of any symmetry (or the lack thereof) between them as expected in the event of transfer (or the lack thereof) of vRNPs, respectively. We found that, in the case of fusion between viruses and 100 nm target vesicles, ~39% of the events led to transfer of viral contents to the target vesicles. This methodology provides a rapid, generic, and cell-free way to assess the inhibitory effects of antiviral drugs and therapeutics on the endosomal escape behavior of enveloped viruses.
See Also:
Latest articles in those days:
- [preprint]Susceptibility of bovine respiratory and mammary epithelial cells to avian and mammalian derived clade 2.3.4.4b H5N1 highly pathogenic avian influenza viruses 12 hours ago
- Genetic Diversity of H10N3 Avian Influenza Virus Isolated from Anhui Province, China 13 hours ago
- Molecular origion of human infection with a novel avian influenza A H10N3 virus in China, 2021 13 hours ago
- Clade 2.3.4.4b but not historical clade 1 HA replicating RNA vaccine protects against bovine H5N1 challenge in mice 13 hours ago
- GGCX promotes Eurasian avian-like H1N1 swine influenza virus adaption to interspecies receptor binding 13 hours ago
[Go Top] [Close Window]