Garg S, Reed C, Davis CT, et al. Outbreak of Highly Pathogenic Avian Influenza A(H5N1) Viruses in U.S. Dairy Cattle and Detection of Two Human Cases - United States, 2024. MMWR Morb Mortal Wkly Rep 2024;73:501–505
On April 1, 2024, the Texas Department of State Health Services reported that a dairy farm worker had tested positive for highly pathogenic avian influenza A(H5N1) virus after exposure to presumably infected dairy cattle; CDC confirmed these laboratory findings. A(H5N1) viruses were found in high concentrations in unpasteurized (raw) milk from infected cows. CDC is collaborating with the U.S. Department of Agriculture, the Food and Drug Administration, the Administration for Strategic Preparedness and Response, the Health Resources and Services Administration, the National Institute of Allergy and Infectious Diseases, and state and local public health and animal health officials using a coordinated One Health approach to identify and prepare for developments that could increase the risk to human health. Activities include monitoring of exposed persons, conducting syndromic and laboratory surveillance, planning epidemiologic investigations, and evaluating medical countermeasures. As of May 22, 2024, approximately 350 farm workers with exposure to dairy cattle or infected raw cow’s milk had been monitored. These monitoring efforts identified a second human A(H5) case with conjunctivitis in Michigan, which was reported on May 22, 2024. CDC considers the current risk to the U.S. public from A(H5N1) viruses to be low; however, persons with exposure to infected animals or contaminated materials, including raw cow’s milk, are at higher risk for A(H5N1) virus infection and should take recommended precautions, including using recommended personal protective equipment, self-monitoring for illness symptoms, and, if they are symptomatic, seeking prompt medical evaluation for influenza testing and antiviral treatment if indicated. Pasteurization inactivates A(H5N1) viruses, and the commercial milk supply is safe for consumption; however, all persons should avoid consuming raw milk or products produced from raw milk. Importantly, the risk to the public might change based on whether A(H5N1) viruses acquire genetic changes that increase their transmissibility to and among humans, which could increase the risk of an influenza pandemic.
See Also:
Latest articles in those days:
- [preprint]Emergence and antigenic characterisation of influenza A(H3N2) viruses with hemagglutinin substitutions N158K and K189R during the 2024/25 influenza season 17 hours ago
- Epitope specificity shapes the CD4+ T cell response to influenza virus infection in mice 17 hours ago
- Vaccination against H5 HP avian influenza virus leads to persistent immune response in wild king penguins 1 days ago
- Molecular Epidemiology and Genetic Diversity of Influenza B Viruses Based on Whole-Genome Analysis in Japan and Myanmar, 2016-2020 1 days ago
- Assessing HPAI-H5 transmission risk across wild bird migratory flyways in the United States 1 days ago
[Go Top] [Close Window]


