Chen Y, Tang F, Cao Z, Zeng J, Qiu Z, Zhang C, Lon. Global pattern and determinant for interaction of seasonal influenza viruses. J Infect Public Health. 2024 Apr 30;17(6):1086-109
Background: The prevalence of different types/subtypes varies across seasons and countries for seasonal influenza viruses, indicating underlying interactions between types/subtypes. The global interaction patterns and determinants for seasonal influenza types/subtypes need to be explored.
Methods: Influenza epidemiological surveillance data, as well as multidimensional data that include population-related, environment-related, and virus-related factors from 55 countries worldwide were used to explore type/subtype interactions based on Spearman correlation coefficient. The machine learning method Extreme Gradient Boosting (XGBoost) and interpretable framework SHapley Additive exPlanation (SHAP) were utilized to quantify contributing factors and their effects on interactions among influenza types/subtypes. Additionally, causal relationships between types/subtypes were also explored based on Convergent Cross-mapping (CCM).
Results: A consistent globally negative correlation exists between influenza A/H3N2 and A/H1N1. Meanwhile, interactions between influenza A (A/H3N2, A/H1N1) and B show significant differences across countries, primarily influenced by population-related factors. Influenza A has a stronger driving force than influenza B, and A/H3N2 has a stronger driving force than A/H1N1.
Conclusion: The research elucidated the globally complex and heterogeneous interaction patterns among influenza type/subtypes, identifying key factors shaping their interactions. This sheds light on better seasonal influenza prediction and model construction, informing targeted prevention strategies and ultimately reducing the global burden of seasonal influenza.
Methods: Influenza epidemiological surveillance data, as well as multidimensional data that include population-related, environment-related, and virus-related factors from 55 countries worldwide were used to explore type/subtype interactions based on Spearman correlation coefficient. The machine learning method Extreme Gradient Boosting (XGBoost) and interpretable framework SHapley Additive exPlanation (SHAP) were utilized to quantify contributing factors and their effects on interactions among influenza types/subtypes. Additionally, causal relationships between types/subtypes were also explored based on Convergent Cross-mapping (CCM).
Results: A consistent globally negative correlation exists between influenza A/H3N2 and A/H1N1. Meanwhile, interactions between influenza A (A/H3N2, A/H1N1) and B show significant differences across countries, primarily influenced by population-related factors. Influenza A has a stronger driving force than influenza B, and A/H3N2 has a stronger driving force than A/H1N1.
Conclusion: The research elucidated the globally complex and heterogeneous interaction patterns among influenza type/subtypes, identifying key factors shaping their interactions. This sheds light on better seasonal influenza prediction and model construction, informing targeted prevention strategies and ultimately reducing the global burden of seasonal influenza.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 12 hours ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 12 hours ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 12 hours ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 22 hours ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 23 hours ago
[Go Top] [Close Window]