Si X, Wang L, Mengersen K, Hu W. Epidemiological features of seasonal influenza transmission among 11 climate zones in Chinese Mainland. Infect Dis Poverty. 2024 Jan 10;13(1):4
Background: Previous studies provided some evidence of meteorological factors influence seasonal influenza transmission patterns varying across regions and latitudes. However, research on seasonal influenza activities based on climate zones are still in lack. This study aims to utilize the ecological-based K?ppen Geiger climate zones classification system to compare the spatial and temporal epidemiological characteristics of seasonal influenza in Chinese Mainland and assess the feasibility of developing an early warning system.
Methods: Weekly influenza cases number from 2014 to 2019 at the county and city level were sourced from China National Notifiable Infectious Disease Report Information System. Epidemic temporal indices, time series seasonality decomposition, spatial modelling theories including Moran´s I and local indicators of spatial association were applied to identify the spatial and temporal patterns of influenza transmission.
Results: All climate zones had peaks in Winter-Spring season. Arid, desert, cold (BWk) showed up the first peak. Only Tropical, savannah (Aw) and Temperate, dry winter with hot summer (Cwa) zones had unique summer peak. Temperate, no dry season and hot summer (Cfa) zone had highest average incidence rate (IR) at 1.047/100,000. The Global Moran´s I showed that average IR had significant clustered trend (z = 53.69, P < 0.001), with local Moran´s I identified high-high cluster in Cfa and Cwa. IR differed among three age groups between climate zones (0-14 years old: F = 26.80, P < 0.001; 15-64 years old: F = 25.04, P < 0.001; Above 65 years old: F = 5.27, P < 0.001). Age group 0-14 years had highest average IR in Cwa and Cfa (IR = 6.23 and 6.21) with unique dual peaks in winter and spring season showed by seasonality decomposition.
Conclusions: Seasonal influenza exhibited distinct spatial and temporal patterns in different climate zones. Seasonal influenza primarily emerged in BWk, subsequently in Cfa and Cwa. Cfa, Cwa and BSk pose high risk for seasonal influenza epidemics. The research finds will provide scientific evidence for developing seasonal influenza early warning system based on climate zones.
Methods: Weekly influenza cases number from 2014 to 2019 at the county and city level were sourced from China National Notifiable Infectious Disease Report Information System. Epidemic temporal indices, time series seasonality decomposition, spatial modelling theories including Moran´s I and local indicators of spatial association were applied to identify the spatial and temporal patterns of influenza transmission.
Results: All climate zones had peaks in Winter-Spring season. Arid, desert, cold (BWk) showed up the first peak. Only Tropical, savannah (Aw) and Temperate, dry winter with hot summer (Cwa) zones had unique summer peak. Temperate, no dry season and hot summer (Cfa) zone had highest average incidence rate (IR) at 1.047/100,000. The Global Moran´s I showed that average IR had significant clustered trend (z = 53.69, P < 0.001), with local Moran´s I identified high-high cluster in Cfa and Cwa. IR differed among three age groups between climate zones (0-14 years old: F = 26.80, P < 0.001; 15-64 years old: F = 25.04, P < 0.001; Above 65 years old: F = 5.27, P < 0.001). Age group 0-14 years had highest average IR in Cwa and Cfa (IR = 6.23 and 6.21) with unique dual peaks in winter and spring season showed by seasonality decomposition.
Conclusions: Seasonal influenza exhibited distinct spatial and temporal patterns in different climate zones. Seasonal influenza primarily emerged in BWk, subsequently in Cfa and Cwa. Cfa, Cwa and BSk pose high risk for seasonal influenza epidemics. The research finds will provide scientific evidence for developing seasonal influenza early warning system based on climate zones.
See Also:
Latest articles in those days:
- [preprint]Mass mortality at penguin mega-colonies due to avian cholera confounds H5N1 HPAIV surveillance in Antarctica 15 hours ago
- [preprint]How the 1918-1920 Influenza Pandemic Spread Across Switzerland - Spatial Patterns and Determinants of Incidence and Mortality 15 hours ago
- Influenza C Virus in Children With Acute Bronchiolitis and Febrile Seizures 19 hours ago
- Feasibility and Safety of Aerosolized Influenza Virus Challenge in Humans Using Two Modern Delivery Systems 19 hours ago
- Avian Influenza Weekly Update # 1026: 12 December 2025 2 days ago
[Go Top] [Close Window]


