Sun X, Belser JA, Pulit-Penaloza JA, Brock N, Kier. A naturally occurring HA-stabilizing amino acid (HA1-Y17) in an A(H9N2) low-pathogenic influenza virus contributes to airborne transmission. mBio. 2023 Dec 19:e0295723
Despite the accumulation of evidence showing that airborne transmissible influenza A virus (IAV) typically has a lower pH threshold for hemagglutinin (HA) fusion activation, the underlying mechanism for such a link remains unclear. In our study, by using a pair of isogenic recombinant A(H9N2) viruses with a phenotypical difference in virus airborne transmission in a ferret model due to an acid-destabilizing mutation (HA1-Y17H) in the HA, we demonstrate that an acid-stable A(H9N2) virus possesses a multitude of advantages over its less stable counterpart, including better fitness in the ferret respiratory tract, more effective aerosol emission from infected animals, and improved host susceptibility. Our study provides supporting evidence for the requirement of acid stability in efficient airborne transmission of IAV and sheds light on fundamental mechanisms for virus airborne transmission.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 2 hours ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 2 hours ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 2 hours ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 12 hours ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 13 hours ago
[Go Top] [Close Window]