Yang J, Zhang T, Yang L, Han X, Zhang X, Wang Q, F. Association between ozone and influenza transmissibility in China. BMC Infect Dis. 2023 Nov 6;23(1):763
Background: Common air pollutants such as ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter play significant roles as influential factors in influenza-like illness (ILI). However, evidence regarding the impact of O3 on influenza transmissibility in multi-subtropical regions is limited, and our understanding of the effects of O3 on influenza transmissibility in temperate regions remain unknown.
Methods: We studied the transmissibility of influenza in eight provinces across both temperate and subtropical regions in China based on 2013 to 2018 provincial-level surveillance data on influenza-like illness (ILI) incidence and viral activity. We estimated influenza transmissibility by using the instantaneous reproduction number ([Formula: see text]) and examined the relationships between transmissibility and daily O3 concentrations, air temperature, humidity, and school holidays. We developed a multivariable regression model for [Formula: see text] to quantify the contribution of O3 to variations in transmissibility.
Results: Our findings revealed a significant association between O3 and influenza transmissibility. In Beijing, Tianjin, Shanghai and Jiangsu, the association exhibited a U-shaped trend. In Liaoning, Gansu, Hunan, and Guangdong, the association was L-shaped. When aggregating data across all eight provinces, a U-shaped association was emerged. O3 was able to accounted for up to 13% of the variance in [Formula: see text]. O3 plus other environmental drivers including mean daily temperature, relative humidity, absolute humidity, and school holidays explained up to 20% of the variance in [Formula: see text].
Conclusions: O3 was a significant driver of influenza transmissibility, and the association between O3 and influenza transmissibility tended to display a U-shaped pattern.
Methods: We studied the transmissibility of influenza in eight provinces across both temperate and subtropical regions in China based on 2013 to 2018 provincial-level surveillance data on influenza-like illness (ILI) incidence and viral activity. We estimated influenza transmissibility by using the instantaneous reproduction number ([Formula: see text]) and examined the relationships between transmissibility and daily O3 concentrations, air temperature, humidity, and school holidays. We developed a multivariable regression model for [Formula: see text] to quantify the contribution of O3 to variations in transmissibility.
Results: Our findings revealed a significant association between O3 and influenza transmissibility. In Beijing, Tianjin, Shanghai and Jiangsu, the association exhibited a U-shaped trend. In Liaoning, Gansu, Hunan, and Guangdong, the association was L-shaped. When aggregating data across all eight provinces, a U-shaped association was emerged. O3 was able to accounted for up to 13% of the variance in [Formula: see text]. O3 plus other environmental drivers including mean daily temperature, relative humidity, absolute humidity, and school holidays explained up to 20% of the variance in [Formula: see text].
Conclusions: O3 was a significant driver of influenza transmissibility, and the association between O3 and influenza transmissibility tended to display a U-shaped pattern.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 17 hours ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 17 hours ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 17 hours ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 1 days ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 1 days ago
[Go Top] [Close Window]