Rijnink WF, Stadlbauer D, Puente-Massaguer E, Okba. Characterization of non-neutralizing human monoclonal antibodies that target the M1 and NP of influenza A viruses. J Virol. 2023 Nov 2:e0164622
Improved broad-spectrum influenza virus vaccines are desperately needed to provide protection against both drifted seasonal and emerging pandemic influenza A viruses (IAVs). Antibody-based protection from influenza A virus-induced morbidity and mortality is traditionally associated with neutralizing antibodies. As such, vaccine efforts have solely focused on the hemagglutinin (HA) as a vaccine target; however, the HA is mutation prone resulting in the need for annual vaccine reformulation. Broad-spectrum vaccines could be achieved through non-neutralizing antibodies that target conserved influenza virus antigens. Here, we describe six human monoclonal antibodies (mAbs) isolated from two H3N2-infected donors that showed robust binding against the conserved internal nucleoprotein (NP) or matrix protein 1 (M1) of IAV strains. Despite the capacity for potent antigen binding, substantial morbidity was observed in mice prophylactically treated with these mAbs and then challenged with A/Netherlands/602/2009 (H1N1) or A/Switzerland/9715293/2013 (H3N2) viruses. While our findings need to be confirmed with a larger number of mAbs and with polyclonal serum, these findings suggest that human NP and M1 antibodies that are elicited following IAV infection/vaccination do not protect from substantial weight loss in the mouse model and imply that protection afforded targeting these antigens following vaccination/infection is most likely the result of cellular-based immunity.IMPORTANCECurrently, many groups are focusing on isolating both neutralizing and non-neutralizing antibodies to the mutation-prone hemagglutinin as a tool to treat or prevent influenza virus infection. Less is known about the level of protection induced by non-neutralizing antibodies that target conserved internal influenza virus proteins. Such non-neutralizing antibodies could provide an alternative pathway to induce broad cross-reactive protection against multiple influenza virus serotypes and subtypes by partially overcoming influenza virus escape mediated by antigenic drift and shift. Accordingly, more information about the level of protection and potential mechanism(s) of action of non-neutralizing antibodies targeting internal influenza virus proteins could be useful for the design of broadly protective and universal influenza virus vaccines.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 10 hours ago
- Avian influenza overview September - November 2025 10 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 11 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 13 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 13 hours ago
[Go Top] [Close Window]


