Wang Q, Jia M, Jiang M, Cao Y, Dai P, Yang J, Yang. Increased population susceptibility to seasonal influenza during the COVID-19 pandemic in China and the United States. J Med Virol. 2023 Oct;95(10):e29186
To the best of our knowledge, no previous study has quantitatively estimated the dynamics and cumulative susceptibility to influenza infections after the widespread lifting of COVID-19 public health measures. We constructed an imitated stochastic susceptible-infected-removed model using particle-filtered Markov Chain Monte Carlo sampling to estimate the time-dependent reproduction number of influenza based on influenza surveillance data in southern China, northern China, and the United States during the 2022-2023 season. We compared these estimates to those from 2011 to 2019 seasons without strong social distancing interventions to determine cumulative susceptibility during COVID-19 restrictions. Compared to the 2011-2019 seasons without a strong intervention with social measures, the 2022-2023 influenza season length was 45.0%, 47.1%, and 57.1% shorter in southern China, northern China, and the United States, respectively, corresponding to an 140.1%, 74.8%, and 50.9% increase in scale of influenza infections, and a 60.3%, 72.9%, and 45.1% increase in population susceptibility to influenza. Large and high-intensity influenza epidemics occurred in China and the United States in 2022-2023. Population susceptibility increased in 2019-2022, especially in China. We recommend promoting influenza vaccination, taking personal prevention actions on at-risk populations, and monitoring changes in the dynamic levels of influenza and other respiratory infections to prevent potential outbreaks in the coming influenza season.
See Also:
Latest articles in those days:
- Intranasal influenza virus-vectored vaccine offers protection against clade 2.3.4.4b H5N1 infection in small animal models 4 hours ago
- Mapping of stakeholders in avian influenza surveillance in Canada 16 hours ago
- [preprint]Population Immunity to Hemagglutinin Head, Stalk and Neuraminidase of Highly Pathogenic Avian Influenza 2.3.4.4b A(H5N1) viruses in the United States and the Impact of Seasonal Influenza on 1 days ago
- Airborne Influenza Virus Surveillance Platform Using Paper-Based Immunosensors and a Growth-Based Virus Aerosol Concentrator 1 days ago
- [preprint]A Human H5N1 Influenza Virus Expressing Bioluminescence for Evaluating Viral Infection and Identifying Therapeutic Interventions 2 days ago
[Go Top] [Close Window]