Lei Y, Sun Y, Wu W, Liu H, Wang X, Shu Y, Fang S. Influenza H7N9 virus disrupts the monolayer human brain microvascular endothelial cells barrier in vitro. Virol J. 2023 Sep 29;20(1):219
Influenza H7N9 virus causes human infections with about 40% case fatality rate. The severe cases usually present with pneumonia; however, some present with central nervous system complications. Pneumonia syndrome is attributed to the cytokine storm after infection with H7N9, but the pathogenic mechanism of central nervous system complications has not been clarified. This study used immortalized human brain microvascular endothelial cells hCMEC/D3 to simulate the blood-brain barrier. It demonstrated that H7N9 virus could infect brain microvascular endothelial cells and compromise the blood-brain barrier integrity and permeability by down-regulating the expression of cell junction-related proteins, including claudin-5, occludin, and vascular endothelial (VE)-cadherin. These results suggested that H7N9 could infect the blood-brain barrier in vitro and affect its functions, which could be a potential mechanism for the pathogenesis of H7N9 viral encephalopathy.
See Also:
Latest articles in those days:
- Evaluation of Trends in Influenza A and B Viruses in Wastewater and Human Surveillance Data: Insights from the 2022-2023 Season in Italy 18 hours ago
- Molecular characterisation of novel reassortants of the G57 genotype of low-pathogenic avian influenza H9N2 virus isolated from poultry farms in Malaysia 18 hours ago
- Comprehensive Molecular Epidemiology of Influenza Viruses in Brazil: Insights from a Nationwide Analysis 2 days ago
- Pandemic preparedness of effective vaccines for the outbreak of newly H5N1 highly pathogenic avian influenza virus 2 days ago
- The PB1 protein of H9N2 influenza A virus inhibits antiviral innate immunity by targeting MAVS for TRIM25-mediated autophagic degradation 2 days ago
[Go Top] [Close Window]