Sun H, Deng G, Sun H, Song J, Zhang W, Li H, Wei X. N-linked glycosylation enhances hemagglutinin stability in avian H5N6 influenza virus to promote adaptation in mammals. PNAS Nexus. 2022 Jun 8;1(3):pgac085
Clade 2.3.4.4 avian H5Ny viruses, namely H5N2, H5N6, and H5N8, have exhibited unprecedented intercontinental spread in poultry. Among them, only H5N6 viruses are frequently reported to infect mammals and cause serious human infections. In this study, the genetic and biological characteristics of surface hemagglutinin (HA) from clade 2.3.4.4 H5Ny avian influenza viruses (AIVs) were examined for adaptation in mammalian infection. Phylogenetic analysis identified an amino acid (AA) deletion at position 131 of HA as a distinctive feature of H5N6 virus isolated from human patients. This single AA deletion was found to enhance H5N6 virus replication and pathogenicity in vitro and in mammalian hosts (mice and ferrets) through HA protein acid and thermal stabilization that resulted in reduced pH threshold from pH 5.7 to 5.5 for viral-endosomal membrane fusion. Mass spectrometry and crystal structure revealed that the AA deletion in HA at position 131 introduced an N-linked glycosylation site at 129, which increases compactness between HA monomers, thus stabilizes the trimeric structure. Our findings provide a molecular understanding of how HA protein stabilization promotes cross-species avian H5N6 virus infection to mammalian hosts.
See Also:
Latest articles in those days:
- Seroprevalence of Avian Influenza in Guinea Fowls in Some Districts in the Upper East Region of Ghana 1 days ago
- Are we prepared for the next pandemic: Monitor on increasing human and animal H5N1 avian influenza infection 1 days ago
- Surveillance and targeted testing for the early detection of zoonotic influenza in humans during the winter period in the EU/EEA 2 days ago
- A systematic review of laboratory investigations into the pathogenesis of avian influenza viruses in wild avifauna of North America 2 days ago
- Genetic and pathogenic potential of highly pathogenic avian influenza H5N8 viruses from live bird markets in Egypt in avian and mammalian models 2 days ago
[Go Top] [Close Window]