Hofflich B, Lunardhi A, Sunku N, Tsujimoto J, Cauw. Modeling the Viral Kinetics of Influenza A During Infection in Humans. Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022
This study explores the natural control system in the body for responding to exposure to the Influenza A virus. More specifically, it delves into the development of a model to simulate the responses of target uninfected cell counts, infected cell counts, and viral titers. There are two particular models of interest: a delayed model that incorporates the brief inactive period for newly infected cells, and a non-delayed model reflecting only infected cells without delay after initial infection. Both models are commonly used in the literature and the benefits of each model are studied and explained. We generate Simulink models for both the delayed and non-delayed sets of ordinary differential equations (ODEs) to simulate responses to different viral titer impulses. Additionally, this study aims to extrapolate these models to the case for a vaccinated individual. To do this, we modify the viral clearance rate and infected cell death rate of our initial model to account for the improved immune response generated by vaccines.
See Also:
Latest articles in those days:
- Intranasal influenza virus-vectored vaccine offers protection against clade 2.3.4.4b H5N1 infection in small animal models 4 hours ago
- Mapping of stakeholders in avian influenza surveillance in Canada 16 hours ago
- [preprint]Population Immunity to Hemagglutinin Head, Stalk and Neuraminidase of Highly Pathogenic Avian Influenza 2.3.4.4b A(H5N1) viruses in the United States and the Impact of Seasonal Influenza on 1 days ago
- Airborne Influenza Virus Surveillance Platform Using Paper-Based Immunosensors and a Growth-Based Virus Aerosol Concentrator 1 days ago
- [preprint]A Human H5N1 Influenza Virus Expressing Bioluminescence for Evaluating Viral Infection and Identifying Therapeutic Interventions 2 days ago
[Go Top] [Close Window]