Si L, Shen Q, Li J, Chen L, Shen J, Xiao X, Bai H,. Generation of a live attenuated influenza A vaccine by proteolysis targeting. Nat Biotechnol. 2022 Jul 4
The usefulness of live attenuated virus vaccines has been limited by suboptimal immunogenicity, safety concerns or cumbersome manufacturing processes and techniques. Here we describe the generation of a live attenuated influenza A virus vaccine using proteolysis-targeting chimeric (PROTAC) technology to degrade viral proteins via the endogenous ubiquitin-proteasome system of host cells. We engineered the genome of influenza A viruses in stable cell lines engineered for virus production to introduce a conditionally removable proteasome-targeting domain, generating fully infective PROTAC viruses that were live attenuated by the host protein degradation machinery upon infection. In mouse and ferret models, PROTAC viruses were highly attenuated and able to elicit robust and broad humoral, mucosal and cellular immunity against homologous and heterologous virus challenges. PROTAC-mediated attenuation of viruses may be broadly applicable for generating live attenuated vaccines.
See Also:
Latest articles in those days:
- Emergence of HPAI H5N6 Clade 2.3.4.4b in Wild Birds: A Case Study From South Korea, 2023 12 hours ago
- Age-Dependent Pathogenesis of Influenza A Virus H7N9 Mediated Through PB1-F2-Induced Mitochondrial DNA Release and Activation of cGAS-STING-NF-κB Signaling 12 hours ago
- Genotypic Clustering of H5N1 Avian Influenza Viruses in North America Evaluated by Ordination Analysis 12 hours ago
- Protocol for enhanced human surveillance of avian influenza A(H5N1) on farms in Canada 22 hours ago
- Evolutionary analysis of Hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China 23 hours ago
[Go Top] [Close Window]