Dai H, Zhou N, Chen M, Li G, Yu X, Su Y, Yi S, Hon. Assess transmissibility of different influenza subtypes: Based on a SEIABR model. Infect Genet Evol. 2022 Jun 22:105319
Objective: Influenza is a worldwide public health problem which causes a serious economic and health burden. In order to provide a scientific basis for improving the prevention and control level of influenza, using dynamic model to evaluate the infection rates of influenza different subtypes from 2010 to 2019 in China.
Methods: This article established SEIABR model based on influenza cases reported by China National Influenza Center from 2010 to 2019. And calculated the transmission rate and Re by combined the natural birth rate, natural death rate, infectious rate, proportion of asymptomatic patients, proportion of untreated patients, recovery rate and fatality rate.
Results: The average infection rate of influenza was (2.38 ± 0.59) × 10-10, and influenza A was (2.24 ± 0.51) × 10-10, influenza B was (2.21 ± 0.68) × 10-10. And average Re were 1.60, 1.51, 1.49. In addition, the infection rates of A /H1N1, A/H3N2, B/Yamagata and B/Victoria were (2.47 ± 0.51) × 10-10, (2.25 ± 0.48) × 10-10, (2.15 ± 0.61) × 10-10, and (2.30 ± 0.66) × 10-10 and average Re were 1.67, 1.52, 1.44, 1.56.
Conclusion: Between each year, flu transmission capacity had fluctuation. Influenza A was more transmissible than influenza B, and during the major subtypes, influenza A/H1N1 was the most transmissible.
Methods: This article established SEIABR model based on influenza cases reported by China National Influenza Center from 2010 to 2019. And calculated the transmission rate and Re by combined the natural birth rate, natural death rate, infectious rate, proportion of asymptomatic patients, proportion of untreated patients, recovery rate and fatality rate.
Results: The average infection rate of influenza was (2.38 ± 0.59) × 10-10, and influenza A was (2.24 ± 0.51) × 10-10, influenza B was (2.21 ± 0.68) × 10-10. And average Re were 1.60, 1.51, 1.49. In addition, the infection rates of A /H1N1, A/H3N2, B/Yamagata and B/Victoria were (2.47 ± 0.51) × 10-10, (2.25 ± 0.48) × 10-10, (2.15 ± 0.61) × 10-10, and (2.30 ± 0.66) × 10-10 and average Re were 1.67, 1.52, 1.44, 1.56.
Conclusion: Between each year, flu transmission capacity had fluctuation. Influenza A was more transmissible than influenza B, and during the major subtypes, influenza A/H1N1 was the most transmissible.
See Also:
Latest articles in those days:
- Avian influenza overview March - June 2022 12 hours ago
- Duck CD8 + T Cell Response to H5N1 Highly Pathogenic Avian Influenza Virus Infection In Vivo and In Vitro 2 days ago
- Early risk of acute myocardial infarction following hospitalization for severe influenza infection in the middle-aged population of Hong Kong 2 days ago
- Understanding the rebound of influenza in the post COVID19 pandemic period holds important clues for epidemiology and control 5 days ago
- Evaluation of PCR-Based Hemagglutinin Subtyping as a Tool to aid in Surveillance of Avian Influenza viruses in Migratory Wild Birds 5 days ago
[Go Top] [Close Window]