Dai H, Zhou N, Chen M, Li G, Yu X, Su Y, Yi S, Hon. Assess transmissibility of different influenza subtypes: Based on a SEIABR model. Infect Genet Evol. 2022 Jun 22:105319
Objective: Influenza is a worldwide public health problem which causes a serious economic and health burden. In order to provide a scientific basis for improving the prevention and control level of influenza, using dynamic model to evaluate the infection rates of influenza different subtypes from 2010 to 2019 in China.
Methods: This article established SEIABR model based on influenza cases reported by China National Influenza Center from 2010 to 2019. And calculated the transmission rate and Re by combined the natural birth rate, natural death rate, infectious rate, proportion of asymptomatic patients, proportion of untreated patients, recovery rate and fatality rate.
Results: The average infection rate of influenza was (2.38 ± 0.59) × 10-10, and influenza A was (2.24 ± 0.51) × 10-10, influenza B was (2.21 ± 0.68) × 10-10. And average Re were 1.60, 1.51, 1.49. In addition, the infection rates of A /H1N1, A/H3N2, B/Yamagata and B/Victoria were (2.47 ± 0.51) × 10-10, (2.25 ± 0.48) × 10-10, (2.15 ± 0.61) × 10-10, and (2.30 ± 0.66) × 10-10 and average Re were 1.67, 1.52, 1.44, 1.56.
Conclusion: Between each year, flu transmission capacity had fluctuation. Influenza A was more transmissible than influenza B, and during the major subtypes, influenza A/H1N1 was the most transmissible.
Methods: This article established SEIABR model based on influenza cases reported by China National Influenza Center from 2010 to 2019. And calculated the transmission rate and Re by combined the natural birth rate, natural death rate, infectious rate, proportion of asymptomatic patients, proportion of untreated patients, recovery rate and fatality rate.
Results: The average infection rate of influenza was (2.38 ± 0.59) × 10-10, and influenza A was (2.24 ± 0.51) × 10-10, influenza B was (2.21 ± 0.68) × 10-10. And average Re were 1.60, 1.51, 1.49. In addition, the infection rates of A /H1N1, A/H3N2, B/Yamagata and B/Victoria were (2.47 ± 0.51) × 10-10, (2.25 ± 0.48) × 10-10, (2.15 ± 0.61) × 10-10, and (2.30 ± 0.66) × 10-10 and average Re were 1.67, 1.52, 1.44, 1.56.
Conclusion: Between each year, flu transmission capacity had fluctuation. Influenza A was more transmissible than influenza B, and during the major subtypes, influenza A/H1N1 was the most transmissible.
See Also:
Latest articles in those days:
- Risk of infection of dairy cattle in the EU with highly pathogenic avian influenza virus affecting dairy cows in the United States of America (H5N1, Eurasian lineage goose/Guangdong clade 2.3.4.4b. ge 12 hours ago
- Avian influenza overview September - November 2025 13 hours ago
- [preprint]Airway organoids reveal patterns of Influenza A tropism and adaptation in wildlife species 13 hours ago
- Cats are more susceptible to the prevalent H3 subtype influenza viruses than dogs 15 hours ago
- Overview of high pathogenicity avian influenza H5N1 clade 2.3.4.4b in wildlife from Central and South America, October 2022-September 2025 15 hours ago
[Go Top] [Close Window]


